Numerical Optimization

Instructor: Sung Chan Jun

Week #9: October 28 – November 1, 2019

Announcement

- Final Exam (Rescheduled)
 - Date and Time
 - December 6 (Friday), 2019 7:00 PM 8:30 PM

Course Syllabus (tentative)

	1st week	Sept. 2, 4	Introduction of optimization	
2	2nd week	Sept. 9, 11	Univariate Optimization	
- 4	3rd week	Sept. 16, 18	Univariate Optimization	
d	4th week	Sept. 23, 25	Unconstrained Multivariate Optimization	
1	5th week	Sept. 30, Oct. 2	Unconstrained Multivariate Optimization	
	6th week	Oct. 7, 9	Unconstrained Multivariate Optimization	National Holiday (Oct. 9)
2	7th week	Oct. 14, 16	Unconstrained Multivariate Optimization	Midterm (Oct. 16)
	8th week	Oct. 21, 23	Unconstrained Multivariate Optimization	
O.Co	mputing			

Numerical Optimization (2019 Fall)

Course Syllabus (tentative)

9th week	Oct. 28, 30	Constrained Multivariate Optimization	
10th week	Nov. 4, 6	Constrained Multivariate Optimization	
11th week	Nov. 11, 13	Constrained Multivariate Optimization	
12th week	Nov. 18, 20	Global Optimization	
13th week	Nov. 25, 27	Global Optimization	
14th week	Dec. 2, 4	Global Optimization, Wrap-up	Final Exam (Dec. 6)
15th week	Dec. 9	Wrap-up	

- Quasi-Newton's Method : BFGS update
 - BFGS update (Broyden, Fletcher, Goldfarb, and Shanno)

$$\begin{aligned} \boldsymbol{B}_{k+1} &= \boldsymbol{B}_k - \frac{\boldsymbol{B}_k \boldsymbol{s}_k \boldsymbol{s}_k^T \boldsymbol{B}_k}{\boldsymbol{s}_k^T \boldsymbol{B}_k \boldsymbol{s}_k} + \frac{\boldsymbol{y}_k \boldsymbol{y}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k}, \text{ assuming } \boldsymbol{s}_k^T \boldsymbol{y}_k > 0 \\ \boldsymbol{s}_k &:= \boldsymbol{x}_{k+1} - \boldsymbol{x}_k, \ \boldsymbol{y}_k := \nabla f_{k+1} - \nabla f_k \end{aligned}$$

Inverse verison of BFGS

$$\begin{array}{c|c}
\mathbf{B}_{k}\mathbf{p}_{k} = -\nabla f(\mathbf{X}_{k}) & \triangleright \mathbf{p}_{k} = -\mathbf{B}_{k}^{-1}\nabla f(\mathbf{X}_{k}) \\
\text{Assuming } \mathbf{D}_{k} := \mathbf{B}_{k}^{-1} & \mathbf{D}_{k} = \mathbf{B}_{k}^{-1} \\
\mathbf{D}_{k+1} = (\mathbf{I} - \rho_{k}\mathbf{S}_{k}\mathbf{Y}_{k}^{\mathsf{T}})\mathbf{D}_{k}(\mathbf{I} - \rho_{k}\mathbf{Y}_{k}\mathbf{S}_{k}^{\mathsf{T}}) + \rho_{k}\mathbf{S}_{k}\mathbf{S}_{k}^{\mathsf{T}} \\
\mathbf{D}_{k+1} = (\mathbf{I} - \rho_{k}\mathbf{S}_{k}\mathbf{Y}_{k}^{\mathsf{T}})\mathbf{D}_{k}(\mathbf{I} - \rho_{k}\mathbf{Y}_{k}\mathbf{S}_{k}^{\mathsf{T}}) + \rho_{k}\mathbf{S}_{k}\mathbf{S}_{k}^{\mathsf{T}}$$

$$\begin{aligned} \mathbf{D}_{k+1} &= (\mathbf{I} - \rho_k \mathbf{s}_k \mathbf{y}_k^{\mathsf{T}}) \mathbf{D}_k (\mathbf{I} - \rho_k \mathbf{y}_k \mathbf{s}_k^{\mathsf{T}}) + \rho_k \mathbf{s}_k \mathbf{s}_k^{\mathsf{T}} \\ \rho_k &:= 1/(\mathbf{y}_k^{\mathsf{T}} \mathbf{s}_k) \end{aligned}$$

(Sherman-Morrison Identity)

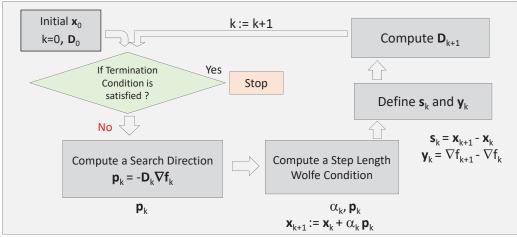
If A is nonsingular and c, d are n x 1 matrices, then

$$(\mathbf{A} + \mathbf{c}\mathbf{d}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{c}\mathbf{d}^T\mathbf{A}^{-1}}{1 + \mathbf{d}^T\mathbf{A}^{-1}\mathbf{c}} \qquad \text{ when } 1 + \mathbf{d}^T\mathbf{A}^{-1}\mathbf{c} \neq 0$$

Recall Last Week

- Quasi-Newton's : BFGS
 - Remarks
 - Wolfe condition yields $\mathbf{s}_k^T \mathbf{y}_k > 0$.
 - If B_k and D_k are positive definite, then so are B_{k+1} and D_{k+1} .
 - Different variants are obtained by different choices of weighting matrix **W**.
 - **Bad situations**: when $\mathbf{s}_k^T \mathbf{y}_k$ is so tiny
 - Good news : BFGS has effective self-correcting property even if \mathbf{D}_k is a poor approximation.
 - It is known that BFGS is the most effective among them.

Quasi-Newton's : BFGS algorithm



Quasi-Newton's: Broyden Class

$$\begin{aligned} \mathbf{B}_{k+1} &= \mathbf{B}_k - \frac{\mathbf{B}_k \mathbf{s}_k \mathbf{s}_k^\mathsf{T} \mathbf{B}_k}{\mathbf{s}_k^\mathsf{T} \mathbf{B}_k \mathbf{s}_k} + \frac{\mathbf{y}_k \mathbf{y}_k^\mathsf{T}}{\mathbf{y}_k^\mathsf{T} \mathbf{s}_k} + \varphi_k (\mathbf{s}_k^\mathsf{T} \mathbf{B}_k \mathbf{s}_k) \mathbf{v}_k \mathbf{v}_k^\mathsf{T}, \ \varphi_k \text{ is a scalar and } \mathbf{v}_k = \left[\frac{\mathbf{y}_k}{\mathbf{y}_k^\mathsf{T} \mathbf{s}_k} - \frac{\mathbf{B}_k \mathbf{s}_k}{\mathbf{s}_k^\mathsf{T} \mathbf{B}_k \mathbf{s}_k} \right] \\ & \quad \Phi_k = 0 \text{ (BFGS) and } \varphi_k = 1 \text{ (DFP) }, \ \mathbf{B}_{k+1} = (1 - \varphi_k) \ \mathbf{B}^{\mathsf{BFGS}}_{k+1} + \varphi_k \ \mathbf{B}^{\mathsf{DFP}}_{k+1}, \ \varphi_k \in (0,1) \end{aligned}$$

Recall Last Week

Derivative Based Methods

Method of Steepest Descent	Newton's Method	Quasi Newton's Method	
Direction	Direction	Direction	
$\mathbf{p}_{k} = -\nabla f(\mathbf{x}_{k})$	$\mathbf{p}_{k} = -(\nabla^{2} f(\mathbf{x}_{k}))^{-1} \nabla f(\mathbf{x}_{k})$	$\mathbf{p}_{k} = -\mathbf{B}_{k}^{-1} \nabla f(\mathbf{x}_{k})$	
		$\mathbf{B}_{k} \approx (\nabla^{2} \mathbf{f}(\mathbf{x}_{k}))$	
Global convergence	Fast convergence	Relatively fast	
Slow convergence near	(quadratic)	convergence close to	
minimum	Require expensive	Newton's	
	Hessian computing	Do not require Hessian	
	every iteration	computing	

- Conjugate Gradient Method (CG)
 - Iterative method to solve a linear system Ax = b for a square symmetric positive definite matrix A.
 - Solving linear system ⇔ Solving minimization problem

$$Ax = b$$

min
$$[\frac{1}{2}x^{T}Ax - b^{T}x]$$

- Conjugacy
 - A set of nonzero vectors $\{\mathbf{p}_0, \mathbf{p}_1, ..., \mathbf{p}_L\}$ is conjugate with respect to symmetric positive definite matrix \mathbf{A} if $\mathbf{p}_i^T \mathbf{A} \mathbf{p}_i = 0$, for all $i \neq j$.
- Conjugate direction methods

For given a set of conjugate directions $\{\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_{n-1}\}$ with respect to a symmetric positive definite matrix \mathbf{A} (n x n), the sequence $\{\mathbf{x}_k\}$ by setting $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$ converges to the minimum of the quadratic convex function $(f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} - \mathbf{b}^T\mathbf{x})$ within at most n steps when α_k is given by exact search.

Recall Last Week

- Conjugate Gradient Method (CG)
 - Consider convex quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} \mathbf{b}^{\mathsf{T}}\mathbf{x}$.
 - Motivation: Present a new conjugate direction (\mathbf{p}_k) in terms of residue $(\mathbf{r}_k := \mathbf{A}\mathbf{x}_k \mathbf{b})$ and the previous conjugate direction (\mathbf{p}_{k-1}) as follows:

$$\mathbf{p}_{k} = -\mathbf{r}_{k} + \beta_{k} \mathbf{p}_{k-1}$$

- Conjugate gradient method is generating conjugate direction for each iteration, so it is a special case of conjugate direction method.
- How to generate conjugate directions?
 - determine β_k in order that a new vector $\mathbf{p}_k = -\mathbf{r}_k + \beta_k \mathbf{p}_{k-1}$ is a conjugate with respect to \mathbf{A} .
 - So β_k is estimated by $\beta_k = \frac{\mathbf{r}_k^T \mathbf{A} \mathbf{p}_{k-1}}{\mathbf{p}_{k-1}^T \mathbf{A} \mathbf{p}_{k-1}}$.

- Conjugate Gradient Method (CG)
 - Standard CG Algorithm $(f(x) = \frac{1}{2}x^TAx b^Tx)$
 - Given \mathbf{x}_0 , Set k:=0, $\mathbf{r}_0 := \mathbf{A}\mathbf{x}_0 \mathbf{b}$, $\mathbf{p}_0 := -\mathbf{r}_0$ (initial search direction is $-\nabla f(\mathbf{x}_0)$)
 - While r_k ≠ 0

$$\alpha_{k} := - r_{k}^{\mathsf{T}} \mathbf{p}_{k}$$

$$\mathbf{p}_{k}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k}$$

$$\Rightarrow \mathbf{x}_{k+1} := \mathbf{x}_{k} + \alpha_{k} \mathbf{p}_{k}$$

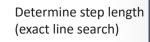
$$\mathbf{r}_{k+1} := \mathbf{A} \mathbf{x}_{k+1} - \mathbf{b}$$

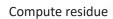
$$\Rightarrow \beta_{k+1} := - r_{k+1}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k}$$

$$\mathbf{p}_{k}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k}$$

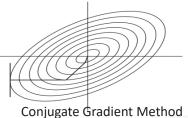
$$\mathbf{p}_{k+1} := - r_{k+1} + \beta_{k+1} \mathbf{p}_{k}$$

$$\Rightarrow k := k + 1$$





Search a new direction



Multivariate Optimization:Conjugate Gradient Method

- CG properties
 - Search directions are conjugate with respect to matrix A.
 - Residues r_i are mutually orthogonal,

that is,
$$\mathbf{r}_{k}^{\mathsf{T}}\mathbf{r}_{i} = \mathbf{r}_{k} \cdot \mathbf{r}_{i} = 0$$
 for $i = 0, 1, ..., k-1$.

Residue r_k and search direction p_i are orthogonal,

that is,
$$\mathbf{r}_k^{\mathsf{T}} \mathbf{p}_i = \mathbf{r}_k \cdot \mathbf{p}_i = 0$$
 for $i = 0, 1, ..., k-1$.

Identities

$$\begin{aligned} & \boldsymbol{r}_{k+1}^{T}\boldsymbol{A}\boldsymbol{p}_{k} \ = \boldsymbol{r}_{k+1}^{T}\boldsymbol{r}_{k+1} \, / \, \boldsymbol{\alpha}_{k} \\ & \boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k} \ = \boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k} \, / \, \boldsymbol{\alpha}_{k} \end{aligned}$$

Numerical Optimization (2019 Fall)

Multivariate Optimization: Conjugate Gradient Method

- Standard CG Algorithm
 - Given x₀
 - Set $\mathbf{r}_0 := \mathbf{A}\mathbf{x}_0 \mathbf{b}$, $\mathbf{p}_0 := -\mathbf{r}_0$, $\mathbf{k} := 0$
 - While $\mathbf{r}_{k} \neq 0$

$$\begin{vmatrix} \alpha_k \coloneqq -r_k^T p_k \\ p_k^T A p_k \end{vmatrix} \Rightarrow x_{k+1} \coloneqq x_k + \alpha_k p_k$$

$$\begin{vmatrix} r_{k+1} \coloneqq A x_{k+1} - b \\ p_{k+1} \coloneqq -r_{k+1} + \beta_{k+1} p_k \end{vmatrix} \Rightarrow k \coloneqq k+1$$

- Given \mathbf{x}_0
- Set $\mathbf{r}_0 := \mathbf{A}\mathbf{x}_0 \mathbf{b}$, $\mathbf{p}_0 := -\mathbf{r}_0$, $\mathbf{k} := 0$
- While $\mathbf{r}_k \neq 0$

$$\begin{array}{c} \alpha_{k} := -\textbf{r}_{k}^{\mathsf{T}} \textbf{p}_{k} \\ \textbf{p}_{k}^{\mathsf{T}} \textbf{A} \textbf{p}_{k} \\ \\ \textbf{r}_{k+1} := \textbf{A} \textbf{x}_{k+1} - \textbf{b} \\ \\ \textbf{p}_{k+1} := -\textbf{r}_{k+1} + \beta_{k+1} \textbf{p}_{k} \\ \\ \textbf{p}_{k+1} := -\textbf{r}_{k+1} + \beta_{k+1} \textbf{p}_{k} \\ \\ \textbf{p}_{k} \\ \\ \textbf{p}_{k+1} := -\textbf{r}_{k+1} + \beta_{k+1} \textbf{p}_{k} \\ \\ \textbf{p}_{k} \\ \\$$

Multivariate Optimization: Conjugate Gradient Method

- Convergence of CG
 - It converges within N-iterations when $\bf A$ is a symmetric p·d matrix of size N x N.
- Convergence rate of CG
 - When **A** has eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$,

$$\left\| \mathbf{x}_{k} - \mathbf{x}^{*} \right\|_{\mathbf{A}} \leq 2 \left(\frac{\sqrt{\kappa(\mathbf{A})} - 1}{\sqrt{\kappa(\mathbf{A})} + 1} \right)^{k} \left\| \mathbf{x}_{0} - \mathbf{x}^{*} \right\|_{\mathbf{A}}, \ \kappa(\mathbf{A}) = \frac{\lambda_{N}}{\lambda_{1}}$$

- CG convergence depends on clustering of eigenvalues of A.
 - When $\kappa(\mathbf{A})$ is big enough, i.e. eigenvalues are widely scattered,
 - · It converges slowly.
 - When $\kappa(A)$ is around 1, i.e. eigenvalues are well clustered,
 - It converges fast.

Multivariate Optimization: Conjugate Gradient Method

- How to speed-up CG when CG convergence is slow
 - One idea
 - To use preconditioner 'symmetric positive definte matrix M'
 - Transform original problem into new problem

$$A x = b \implies (M^{-1}A) x = M^{-1}b$$
 or
 $A x = b \implies (M^{-1}A M^{-1}) x^{-1}b$ and $x^{-1}A M^{-1}A$

In order for κ(M⁻¹ A) or κ(M⁻¹ A M^{-T}) to be close to 1, M can be chosen properly, then CG can be faster than before.

Multivariate Optimization:Conjugate Gradient Method

- How to choose preconditioner M?
 - **M** should be symmetric and positive definite.
 - **M** should be such that $\mathbf{M}^{\mathsf{T}}\mathbf{x} = \mathbf{x}^{\mathsf{A}}$ can be solved efficiently.
 - **M** should approximate **A** in the sense that $\|\mathbf{I} \mathbf{M}^{-1}\mathbf{A}\| << 1$
- Examples
 - For the decomposition $\mathbf{A} = \mathbf{L} + \mathbf{D} + \mathbf{L}^{\mathsf{T}}$ (L: strictly low triangular, \mathbf{D} : diagonal) of the symmetric positive definite matrix \mathbf{A}
 - M = D : 'Jacobi' preconditioning,
 - M = L + D: 'Gauss-Seidel' preconditioning,
 - **M** = $(\mathbf{D} + \omega \mathbf{L})/\omega$, $(\omega > 0)$: 'SOR' preconditioning.
 - $\mathbf{M} = \mathbf{H} \mathbf{H}^{\mathsf{T}}$, where \mathbf{H} is 'close' to \mathbf{L} . 'Incomplete Cholesky factorization'

Multivariate Optimization: Conjugate Gradient Method

- More Common Preconditioners (Preconditioning)
 - Incomplete LU
 - Algebraic multi-grid (AMG)
 - Inverse based multi-level Incomplete LU

Multivariate Optimization:Conjugate Gradient Method

Nonlinear CG (Flectcher-Reeves: CG-FR)

Consider nonlinear function f(x)

- Given \mathbf{x}_{0} , Evaluate $f_0 := f(\mathbf{x}_0)$, $\nabla f_0 := \nabla f(\mathbf{x}_0)$.
- Set $\mathbf{p}_0 := -\nabla f_0$, k := 0
- While $\nabla f_k \neq 0$

$$\begin{aligned} &\text{compute} \quad \boldsymbol{\alpha}_k \\ &\boldsymbol{x}_{k+1} := \, \boldsymbol{x}_k \, + \, \boldsymbol{\alpha}_k \boldsymbol{p}_k. \\ &\text{Evaluate} \quad \nabla f_{k+1} \\ &\boldsymbol{\beta}_{k+1}^{\text{FR}} := \, \nabla f_{k+1}^{\text{T}} \nabla f_{k+1} \\ &\boldsymbol{\beta}_{k+1}^{\text{FR}} := - \nabla f_{k+1} + \boldsymbol{\beta}_{k+1}^{\text{FR}} \boldsymbol{p}_k \\ &\boldsymbol{k} := k+1 \end{aligned}$$

Numerical Optimization (2019 Fall)

Numerical Optimization (2019 Fall)

Multivariate Optimization: Conjugate Gradient Method

Comparison : Linear CG and Nonlinear CG

Linear CG		Nonlinear CG (CG-FR)	
Given \mathbf{x}_0 , $f(\mathbf{x}) = 1/2\mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{b}^T \mathbf{x}$		Given \mathbf{x}_{0} , Evaluate $\mathbf{f}_{0} := \mathbf{f}(\mathbf{x}_{0})$, $\nabla \mathbf{f}_{0} := \nabla \mathbf{f}(\mathbf{x}_{0})$.	
Set $\mathbf{r}_0 := \mathbf{A}\mathbf{x}_0 - \mathbf{b}, \mathbf{p}_0 := -\mathbf{r}_0, \mathbf{k} := 0$		Set $\mathbf{p}_0 := -\nabla f_0$, $k := 0$	
While r _k ≠ 0		While $\nabla f_k \neq 0$	
$\alpha_{k} := \frac{\mathbf{r}_{k}^{T} \mathbf{r}_{k}}{\mathbf{p}_{k}^{T} \mathbf{A} \mathbf{p}_{k}}$ $\mathbf{x}_{k+1} := \mathbf{x}_{k} + \alpha_{k} \mathbf{p}_{k}$ $\mathbf{r}_{k+1} := \mathbf{r}_{k} + \alpha_{k} \mathbf{A} \mathbf{p}_{k}$ $\beta_{k+1} := \frac{\mathbf{r}_{k+1}^{T} \mathbf{r}_{k+1}}{\mathbf{r}_{k}^{T} \mathbf{r}_{k}}$ $\mathbf{p}_{k+1} := -\mathbf{r}_{k+1} + \beta_{k+1} \mathbf{p}_{k}$ $k := k + 1$		compute α_k $\mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \mathbf{p}_k.$ Evaluate ∇f_{k+1} $\beta_{k+1}^{FR} := \nabla f_{k+1}^T \nabla f_{k+1} / \nabla f_k^T \nabla f_k$ $\mathbf{p}_{k+1} := -\nabla f_{k+1} + \beta_{k+1}^{FR} \mathbf{p}_k$ $k := k + 1$	

Note that we observe $\nabla f(\mathbf{x}_k) = \mathbf{A}\mathbf{x}_k - \mathbf{b} = \text{residue} = \mathbf{r}_k$

Multivariate Optimization:Conjugate Gradient Method

- CG-FR
 - If f(x) is a convex function and step length is exact, CG-FR comes to linear CG.
 - For nonlinear f(x), exact search is not easy. So, strong Wolfe condition is recommendable for descent condition.
 - Strong Wolfe condition

$$\begin{split} & \left| f(\boldsymbol{x}_k + \boldsymbol{\alpha}_k \boldsymbol{p}_k) - f(\boldsymbol{x}_k) \le c_1 \boldsymbol{\alpha}_k \nabla f(\boldsymbol{x}_k) \cdot \boldsymbol{p}_k \right| \\ & \left| \nabla f(\boldsymbol{x}_k + \boldsymbol{\alpha}_k \boldsymbol{p}_k) \cdot \boldsymbol{p}_k \right| \le -c_2 \nabla f(\boldsymbol{x}_k) \cdot \boldsymbol{p}_k, \quad 0 < c_1 < c_2 < 1/2 \end{split}$$

Recall: Wolfe condition

Multivariate Optimization: Conjugate Gradient Method

- Some issues on CGs
 - Linear CG
 - It is easy to find exact step length
 - It terminates within finite iterations
 - Nonlinear CG
 - It is common to do inexact search
 - It needs restart strategies
 - After the given number of iteration, $\mbox{set } \beta_k \mbox{ to 0 when two gradients are far from orthogonal by such a test:}$

$$\frac{\left|\nabla f_k^T \nabla f_{k-1}\right|}{\nabla f_k^T \nabla f_k} \ge \nu > 0, \text{ ν is a given number.}$$

Multivariate Optimization: Conjugate Gradient Method

- Variants of nonlinear CG
 - · Polak-Ribiere (CG-PR) method

· Hestenes-Stiefel (CG-HS) method

$$\beta_{k+1}^{\text{HS}} := \nabla f_{k+1}^{\text{T}} (\nabla f_{k+1} - \nabla f_{k}) / (\nabla f_{k+1} - \nabla f_{k})^{\text{T}} p_{k}$$

Numerical Optimization (2019 Fall)

Multivariate Optimization:Conjugate Gradient Method

When $f(x) = \frac{1}{2}x^{T}Ax - b^{T}x$ and A is non-symmetric

- Bi-conjugate Gradient Methods(BICG)
 - Generate an auxiliary function $g(\widetilde{\mathbf{x}}) = 1/2\widetilde{\mathbf{x}}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \widetilde{\mathbf{x}} \widetilde{\mathbf{b}}^{\mathsf{T}} \widetilde{\mathbf{x}}$
 - Do the CG procedure together to optimize f(x) and g(x) at the same time.
 - Given \mathbf{x}_0 , $\widetilde{\mathbf{x}}_0$, $\widetilde{\mathbf{b}}$, set \mathbf{r}_0 := $\mathbf{A}\mathbf{x}_0 \mathbf{b}$ & $\widetilde{\mathbf{r}}_0$:= $\mathbf{A}^{\mathsf{T}}\widetilde{\mathbf{x}}_0 \widetilde{\mathbf{b}}$
 - Generate two conjugate sequences:

$$\begin{split} & | \boldsymbol{r}_{k+1} \coloneqq \boldsymbol{r}_{k} + \boldsymbol{\alpha}_{k} \boldsymbol{A} \boldsymbol{p}_{k} & | \boldsymbol{p}_{k+1} = -\boldsymbol{r}_{k+1} + \boldsymbol{\beta}_{k+1} \boldsymbol{p}_{k} \\ & | \widetilde{\boldsymbol{r}}_{k+1} \coloneqq \widetilde{\boldsymbol{r}}_{k} + \boldsymbol{\alpha}_{k} \boldsymbol{A}^{\mathsf{T}} \widetilde{\boldsymbol{p}}_{k} & | \widetilde{\boldsymbol{p}}_{k+1} = -\widetilde{\boldsymbol{r}}_{k+1} + \boldsymbol{\beta}_{k+1} \widetilde{\boldsymbol{p}}_{k} \end{split}$$

Multivariate Optimization: Conjugate Gradient Method

- Bi-conjugate Gradient Methods(BICG)
 - Choice of α and β : to ensure the orthogonalities:

$$\mathbf{r}_{i}^{T}\widetilde{\mathbf{r}_{i}} = \mathbf{p}_{i}\mathbf{A}\widetilde{\mathbf{p}}_{i} = 0 \text{ if } i \neq j$$

• So, we get

$$\boldsymbol{\alpha}_{k} = \frac{\boldsymbol{r}_{k}^{T} \widetilde{\boldsymbol{r}_{k}}}{\widetilde{\boldsymbol{p}}_{k}^{T} \boldsymbol{A} \boldsymbol{p}_{k}}, \quad \boldsymbol{\beta}_{k+1} = \frac{\boldsymbol{r}_{k+1}^{T} \widetilde{\boldsymbol{r}_{k+1}}}{\boldsymbol{r}_{k}^{T} \widetilde{\boldsymbol{r}_{k}}}$$

Multivariate Optimization: Conjugate Gradients Method

When $f(x) = \frac{1}{2}x^{T}Ax - b^{T}x$ and A is non-symmetric

- Conjugate Gradients Squares(CGS)
 - · Looking at CG, we realize that

$$\mathbf{r}_{k} := \mathbf{r}_{k-1} + \alpha_{k-1} \mathbf{A} \mathbf{p}_{k-1} \Rightarrow \mathbf{r}_{k} = \mathbf{P}_{k} (\mathbf{A}) \mathbf{r}_{0}$$

for some polynomial $\mathbf{P}_{k} (\mathbf{A})$ when $\mathbf{p}_{0} = -\mathbf{r}_{0}$

- As iteration goes, r_k will approach 0. It means P_k(A) is a kind of contraction operator.
- Evidently, when $\mathbf{r}_k = P_k(\mathbf{A})^2 \mathbf{r}_{0,}$ it is expected to give faster convergence than original CG.

Ref: SIAM J. SCI. STAT. COMPUT. (1989) 36-52

Multivariate Optimization:Conjugate Gradients Method

When $f(x) = \frac{1}{2}x^{T}Ax - b^{T}x$ and A is non-symmetric

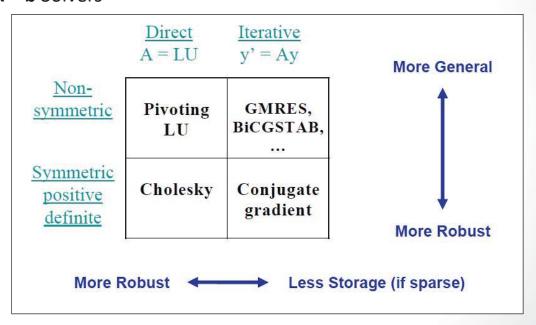
- Bi-conjugate Gradients Stabilized(BICGSTAB)
 - In CGS, we realize that

$$\mathbf{r}_{k} = \mathbf{P}_{k}(\mathbf{A})^{2}\mathbf{r}_{0} \implies \mathbf{r}_{k} = \mathbf{Q}_{k}(\mathbf{A})\mathbf{P}_{k}(\mathbf{A})\mathbf{r}_{0}$$

- Instead of P_k(A)P_k(A), use of Q_k(A)P_k(A) for some polynomial Q_k(A) is possible.
- When $Q_k(\mathbf{A}) = (1 + \alpha_1 \mathbf{A})(1 + \alpha_2 \mathbf{A})...(1 + \alpha_k \mathbf{A})$, it is good to have more stabilized convergence than CGS.

Multivariate Optimization:Conjugate Gradients Method

Ax = b Solvers



Ref.: https://nanohub.org/

Multivariate Optimization: Conjugate Gradient Method

Homework #5 (Implementation)

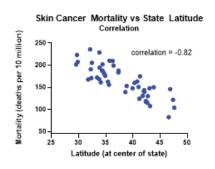
Due date: November 6 (Wednesday), 2019 10:30AM

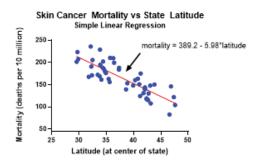
- Implement linear/nonlinear Conjugate Gradient methods for the following functions:
 - $f(x, y) = (x + 2y 7)^2 + (2x + y 5)^2$
 - $f(x, y) = 40(y x^2)^2 + (1-x)^2$
 - $f(x, y) = (1.5 x + xy)^2 + (2.25 x + xy^2)^2 + (2.625 x + xy^3)^2$
- Discuss their performances between linear and nonlinear CGs.

30

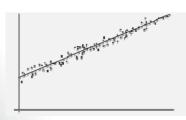
Multivariate Optimization: Least Square Methods

How to determine a fitted model for the given measurement data

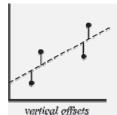


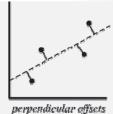


https://www.graphpad.com/









http://mathworld.wolfram.com/LeastSquaresFitting.html

Multivariate Optimization: Least Square Methods

Least Square Method is a way to minimize the functional.

functional: a real-valued function

$$f(\mathbf{x}) = \frac{1}{2} \sum_{j=1}^{m} \left[\phi(\mathbf{x}; \mathbf{t}_j) - \mathbf{y}_j \right]^2 = \frac{1}{2} \sum_{j=1}^{m} r_j(\mathbf{x})^2$$

$$r_j(\mathbf{x}) := \phi(\mathbf{x}; \mathbf{t}_j) - \mathbf{y}_j$$

$$r_j(\mathbf{x}) := \phi(\mathbf{x}; t_j) - y_j$$

modeling function for the given data yi

For residue vector component $r_i(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$

•
$$\nabla f(\mathbf{x}) = \sum_{j=1}^{m} r_j(\mathbf{x}) \nabla r_j(\mathbf{x})$$

gradient of f(x)

•
$$\nabla^2 f(\mathbf{x}) = \sum_{j=1}^m \nabla r_j(\mathbf{x}) \nabla r_j(\mathbf{x})^T + \sum_{j=1}^m r_j(\mathbf{x}) \nabla^2 r_j(\mathbf{x})$$
 Hessian of $f(\mathbf{x})$

Jacobian

- Multivariate function $r(\mathbf{x}) = (r_1(\mathbf{x}), r_2(\mathbf{x}), ..., r_m(\mathbf{x}))^T : \mathbb{R}^n \to \mathbb{R}^m, \mathbf{x} = (x_1, x_2, ..., x_n)$
- Jacobian matrix J (m ×n) of r(x) is defined by

$$J(\mathbf{x}) = \frac{d\mathbf{r}}{d\mathbf{x}} = \frac{\partial(r_1, r_2, \cdots, r_m)}{\partial(x_{1,1}, x_{2,2}, \cdots, x_{n})} := \begin{bmatrix} \frac{\partial r_1(\mathbf{x})}{\partial x_1} & \frac{\partial r_2(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial r_m(\mathbf{x})}{\partial x_1} \\ \frac{\partial r_1(\mathbf{x})}{\partial x_2} & \frac{\partial r_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial r_m(\mathbf{x})}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial r_1(\mathbf{x})}{\partial x_n} & \frac{\partial r_2(\mathbf{x})}{\partial x_n} & \cdots & \frac{\partial r_m(\mathbf{x})}{\partial x_n} \end{bmatrix}^T$$

Multivariate Optimization: Least Square Methods

Reformulation

$$f(\mathbf{x}) = \frac{1}{2} \sum_{j=1}^{m} \left[\phi(\mathbf{x}; t_j) - y_j \right]^2$$

$$r_j(\mathbf{x}) := \varphi(\mathbf{x}; t_j) - y_j$$

$$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{m} r_{i}(\mathbf{x})^{2} = \frac{1}{2} ||r(\mathbf{x})||_{2}^{2} \text{ 'Euclidean Norm'}$$

Residue vector $\mathbf{r}(\mathbf{x}) = (\mathbf{r}_1(\mathbf{x}), \, \mathbf{r}_2(\mathbf{x}), \, ..., \, \mathbf{r}_m(\mathbf{x}))^T : \mathbf{R}^n \to \mathbf{R}^m$ Let $J(\mathbf{x})$ be Jacobian of $\mathbf{r}(\mathbf{x})$. Then

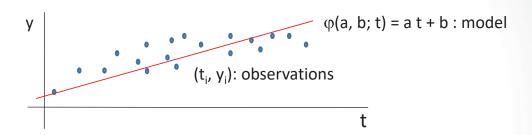
• $\nabla f(\mathbf{x}) = \sum_{j=1}^{m} r_j(\mathbf{x}) \nabla r_j(\mathbf{x}) = J(\mathbf{x})^T r(\mathbf{x})$

•
$$\nabla^2 f(\mathbf{x}) = \sum_{j=1}^{m} \nabla r_j(\mathbf{x}) \nabla r_j(\mathbf{x})^T + \sum_{j=1}^{m} r_j(\mathbf{x}) \nabla^2 r_j(\mathbf{x})$$

= $J(\mathbf{x})^T J(\mathbf{x}) + \sum_{j=1}^{m} r_j(\mathbf{x}) \nabla^2 r_j(\mathbf{x})$

[34]

Multivariate Optimization: Least Square Methods



Step 1. Define cost function
$$f(a, b) = \sum [y_i - \phi(a, b; t_i)]^2 = \sum [y_i - (a t_i + b)]^2$$

This is how to measure discrepancy between model and observation.

Step 2. Differentiate f(a,b) over undetermined parameters a and b.

Find a & b such that $\partial f/\partial a = \partial f/\partial b = 0$.

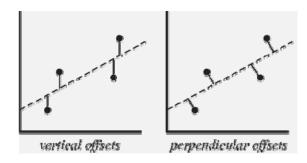
Then
$$\partial f/\partial a = -2\sum t_i[y_i - (a t_i + b)] = 0$$

 $\partial f/\partial b = -2\sum [y_i - (a t_i + b)] = 0$

$$\left(\sum_i t_i^2 \sum_i t_i\right) \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \sum_i t_i y_i \\ \sum_i y_i \end{pmatrix}$$

Multivariate Optimization: Least Square Methods

- Different ways to measure discrepancy between model and observation
 - $\max_{j=1,2,...,m} | \phi(\mathbf{x}; t_j) y_j | \rightarrow | r(\mathbf{x}) |_{\infty}$
 - $\sum_{j=1}^{m} | \phi(\mathbf{x}; t_j) y_j | \rightarrow | r(\mathbf{x}) |_1$



35

Multivariate Optimization: Least Square Methods

Linear least square problems ('Simplest LS')

$$\min_{\mathbf{x}} \ f(\mathbf{x}), \quad f(\mathbf{x}) := \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{y} \|_{2}^{2} = \frac{1}{2} (\mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} - \mathbf{y}^{\mathsf{T}}) (\mathbf{A} \mathbf{x} - \mathbf{y})$$

- $\nabla f(\mathbf{x}) = \mathbf{A}^{\mathsf{T}}(\mathbf{A} \mathbf{x} \mathbf{y})$
- $\nabla^2 f(\mathbf{x}) = \mathbf{A}^T \mathbf{A}$
- When A has full column rank (that is, A^T A is invertible), then A^T A is positive definite and f(x) is a convex quadratic functional. So, seeking x* such that ∇f(x) = 0 yields the global minimizer.

$$\nabla f(\mathbf{x}^*) = 0 \leftrightarrow \mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{y}$$
 'normal equation'

36

Multivariate Optimization: Least Square Methods

- How to solve normal equation
 - Cholesky factorization of A^TA
 - QR factorization
 - SVD factorization
 - Iterative methods
 - Conjugate Gradients
 - Generalized Minimal Residue, Bi-conjugate Gradients
 - Conjugate Gradient Squared
 - Bi-conjugate Gradient Stabilized

Multivariate Optimization: Least Square Methods

- Cholesky factorization for A x = b
 - A is decomposed into an upper triangular L and its transpose.

(Assume A is positive definite symmetric matrix)

- Then L L^T x = b.
 - Solve L y = b by back-substitution
 - Then solve $\mathbf{L}^T \mathbf{x} = \mathbf{y}$ by back-substitution
 - Back-substitution is simple and efficient.

- QR factorization for A x = b
 - A is decomposed into an orthogonal Q and an upper triangular R.
 - A = Q R (orthogonal matrix $Q: Q Q^T = I$)
 - Then $\mathbf{Q} \mathbf{R} \mathbf{x} = \mathbf{b} \leftrightarrow \mathbf{R} \mathbf{x} = \mathbf{Q}^{\mathsf{T}} \mathbf{b}$.
 - Solve $\mathbf{R} \mathbf{x} = \mathbf{Q}^{\mathsf{T}} \mathbf{b}$ by back-substitution

Multivariate Optimization: Least Square Methods

- SVD factorization for A x = b
 - A is decomposed into an orthogonal, a diagonal and an orthogonal.
 - **A** = $U S V^T$ (U, V are orthogonal and S is a diagonal)
 - Then $U S V^T x = b$

$$\leftrightarrow$$
 S V^T x = U^T b

$$\leftrightarrow V^T x = S^{-1} U^T b \iff x = V S^{-1} U^T b$$

When A is m x n (m > n), it yields

$$\mathbf{A} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \mathbf{S}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{V}^\mathsf{T} = \mathbf{U}_1 \mathbf{S}_1 \mathbf{V}^\mathsf{T}$$

Multivariate Optimization: Least Square Methods

Nonlinear least square problems

Nonlinear model

$$\min_{\mathbf{x}} f(\mathbf{x}), f(\mathbf{x}) := \frac{1}{2} \sum_{j=1}^{m} (\phi(\mathbf{x}; t_{j}) - y_{j})^{2} = \frac{1}{2} \sum_{j=1}^{m} r_{j}(\mathbf{x})^{2}$$

Gauss-Newton method (modified Newton's)

(Recall : Newton's method : Solve $H(\mathbf{x}_k) \mathbf{p} = -\nabla f(\mathbf{x}_k)$)

• Let $J(\mathbf{x})$ be a Jacobian of $r(\mathbf{x}) = (r_1(\mathbf{x}), r_2(\mathbf{x}), ..., r_m(\mathbf{x}))^T$.

$$H(\mathbf{x}_k) = \nabla^2 f(\mathbf{x}_k) = J(\mathbf{x}_k)^T J(\mathbf{x}_k) + \sum_{j=1}^m r_j(\mathbf{x}_k) \nabla^2 r_j(\mathbf{x}_k)$$

$$\nabla f(\mathbf{x}_k) = J(\mathbf{x}_k)^T r(\mathbf{x}_k)$$

Use the approximation of Hessian

 $\nabla^2 f(\mathbf{x}_k) \approx J(\mathbf{x}_k)^T J(\mathbf{x}_k)$ by dropping off 2^{nd} term having $\nabla^2 r_i$

