Numerical Optimization

Instructor : Sung Chan Jun

Numerical Optimization (2019 Fall)

Week #9 : October 28 — November 1, 2019

@Compuﬁng . i” .

Announcement

= Final Exam (Rescheduled)

* Date and Time

= December 6 (Friday), 2019 7:00 PM — 8:30 PM
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Course Syllabus (tentative)
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-Computing

Course Syllabus (tentative)

Constrained Multivariate
Optimization

9th week Oct. 28, 30

Constrained Multivariate

10th week Nov. 4, 6 L
Optimization

Constrained Multivariate

11th week | Nov. 11,13 L
Optimization

Numerical Optimization (2019 Fall)

12th week | Nov. 18,20 Global Optimization

13th week | Nov. 25, 27 Global Optimization

14th week Dec. 2, 4 Global Optimization, Wrap-up Final Exam (Dec. 6)
15th week Dec.9 Wrap-up

oy
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Recall Last Week

= Quasi-Newton’s Method : BFGS update

* BFGS update (Broyden, Fletcher, Goldfarb, and Shanno)

B -p _BSSB, Ve
k+1 — =k TB + T
sk ksk yksk

S, = X — X, Y, = Vi, =V

, assuming sy, >0

* |nverse verison of BFGS

kak: —Vf(Xk) j> pk= —B;1Vf(xk) Dk+1 = (I - kakYI)Dk (I - pkyksl) + kakSI
A . D, =B -1
ssuming D, := By P = 1/(y;s,)

(Sherman-Morrison Identity)

* If Ais nonsingular and ¢, d are n x 1 matrices, then
A ledTAT!

A dT -1 = A—]_
(A +ed) 1T dTA ¢

when 14+ dTA e #£0

@Compuﬁng

Numerical Optimization (2019 Fall)
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Recall Last Week

* Quasi-Newton’s : BFGS

* Remarks

Wolfe condition yields s, "y, >0.

= If B, and D, are positive definite, then so are B,,, and D,,,.

= Different variants are obtained by different choices of weighting matrix W.
= Bad situations : when sy, is so tiny

* Good news : BFGS has effective self-correcting property even if D, is a poor

approximation.

= |t is known that BFGS is the most effective among them.

@Sompuﬁng
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Recall Last Week

= Quasi-Newton’s : BFGS algorithm

Initial x,

k:=k+1

k=0, D,

VE

—

< Condition is
T satisfied ?

No&

////f\\\\\\

_ .
~__—IfTermination

\\\/////

Compute a Search Direction |:>
P.= -DV,

Compute D,

—_ Yes

| Stop

i)

Define s, and y,

i

Compute a Step Length

Wolfe Condition

Sk = Xier ™ X
Y= ka+1 - ka

Py

Qs Py
Xie1 = X+ Oy Py

* Quasi-Newton’s : Broyden Class

B.s.s,B
_ k=2k 2k Pk
Bk+1_Bk_

.
VAL
5 T

SIBksk

@Compuﬁng

YSk
* ¢,=0(BFGS)and ¢, =1 (DFP), B,,; = (1—¢,) B",; + &, B**i1, $.€(0,1)

+ &, (s,B,s,)v,v,, & is ascalar and v, =[

Numerical Optimization (2019 Fall)
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SIBkSk

il!i

Recall Last Week

= Derivative Based Methods

Method of Steepest

Newton’s Method

Quasi Newton’s Method

* Global convergence
* Slow convergence near

minimum

Descent
Direction Direction Direction
p, = -Vf(x,) P, = -(Vf(x,))1VF(x,) p, = -B, 1Vf(x,)
B~ (Vf(x,))

* Fast convergence
(quadratic)

* Require expensive
Hessian computing

every iteration

* Do not require Hessian

* Relatively fast
convergence close to

Newton’s
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Recall Last Week

* Conjugate Gradient Method (CG)

* Iterative method to solve a linear system Ax = b for a square

symmetric positive definite matrix A.

* Solving linear system < Solving minimization problem
Ax=b min [2X"Ax — b™x]

* Conjugacy

= A set of nonzero vectors {p,, p,, ..., P} is conjugate with respect to symmetric

positive definite matrix A if p,A p;=0, foralli#j.

* Conjugate direction methods

Numerical Optimization (2019 Fall)

For given a set of conjugate directions {p,, py, ..., P,.1} With respect to a symmetric positive definite

matrix A (n x n), the sequence {x,} by setting x,,, = X, + o, p, converges to the minimum of the

quadratic convex function (f(x) = %x"Ax — b"x) within at most n steps when o, is given by exact search.

@Compuﬁng . i” .

Recall Last Week L

= Conjugate Gradient Method (CG)

* Consider convex quadratic function f(x) = %4x"Ax — b'x.
* Motivation : Present a new conjugate direction (p,) in terms of residue (r, :=
Ax, - b) and the previous conjugate direction (p,_,) as follows:
Py = -F + PPy
= Conjugate gradient method is generating conjugate direction for each

iteration, so it is a special case of conjugate direction method.

= How to generate conjugate directions?
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* determine B, in order that a new vector p, = -r, + B,p,.; is a conjugate with respect
to A.
AP,
P, AP,

@Sompuﬁng | ili |

* So B,is estimated by B, =




Recall Last Week

= Conjugate Gradient Method (CG)
* Standard CG Algorithm (f(x) = %x"Ax — b'x)

= Given x,, Set k:=0, ry:= Ax,- b, p,:= -r, (initial search direction is -Vf(x,))

= Whiler, 20

.
a, = L F% = X, =X, +ap, < Determine step length
P AP,

(exact line search)

- _ = rkT+1Ap k
o = AX o — b = By = pIApk <:| Compute residue

p =t +B..p. = ki=k+1 <_[ Search a new direction
k+1 k+1 k+1Mk Sl

@:ompuﬁng Method of SLepest Descent Conjugate %radient Method i”

Numerical Optimization (2019 Fall)

Multivariate Optimization: -
Conjugate Gradient Method

* CG properties
* Search directions are conjugate with respect to matrix A.
* Residues r; are mutually orthogonal,
thatis, r'r,=r -r,=0fori=0,1, .., k-1.
* Residue r, and search direction p, are orthogonal,
thatis, r,'p,;=r.-p;=0fori=0,1, .., k-1.
* |ldentities

T T

rk+1Apk =l /ak
T T

pAp, = LT, /ak
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Multivariate Optimization:
Conjugate Gradient Method

e Standard CG Algorithm
— Given x,
— Setry:=Ax,-b, py:=-r, k:=0

— Whiler, 20

-
a = P . = X, =X, +oPp,
P.AR,

T

= Bk+1 — rk+1Apk

rk+1 = Axk+1 - b pTApk
k

Pt = ey T BB = ki=k+1

@Compuﬁng

Practical CG Algorithm
— Given x,
— Setry:=Ax,-b, py:=-ry k:=0

— Whiler, 20

oL,
A —
o, =Kk = X4 =X, +op,
pkApk JRab NN

(N ‘
ho =f +aAp = B, = e Fr
N k Tk

pk+1 =

N -

_rk+1+Bk+1pk = k::k+]\_-_/

I

a
/ k' These identities are
applied here.

Numerical Optimization (2019 Fall)

T T
f Apk = Kl

k+1

pIApk = rkTrk /ak
)

Multivariate Optimization:
Conjugate Gradient Method

= Convergence of CG

* It converges within N-iterations when A is a symmetric p-d matrix of size N x N.

= Convergence rate of CG

* When A has eigenvalues A, <A, < ...

-], <o Y2

Jr(A) +1

xo—x*“A, x(A) = %

* CG convergence depends on clustering of eigenvalues of A.

= When k(A) is big enough, i.e. eigenvalues are widely scattered,

* It converges slowly.

= When k(A) is around 1, i.e. eigenvalues are well clustered,

* |t converges fast.

@Sompuﬁng
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Multivariate Optimization:
Conjugate Gradient Method

= How to speed-up CG when CG convergence is slow

* One idea
= To use preconditioner ‘symmetric positive definte matrix M’
= Transform original problem into new problem
Ax=b = (M!A)x=Mlb or
Ax=b = (MIAMT)x""M1tb and x"=M"x

= |n order for k(M1A) or k(M1A M) to be close to 1, M can be

Numerical Optimization (2019 Fall)

chosen properly, then CG can be faster than before.

@Compuﬁng . i” .

Multivariate Optimization:
Conjugate Gradient Method

= How to choose preconditioner M?
* M should be symmetric and positive definite.
* M should be such that M"x = x" can be solved efficiently.
+ M should approximate Ain the sense that H I-M A H <<
= Examples

* For the decomposition A =L+ D + LT (L: strictly low triangular, D: diagonal)

of the symmetric positive definite matrix A

= M =D: ‘Jacobi’ preconditioning,
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= M =L+ D: ‘Gauss-Seidel’ preconditioning,

= M= (D+ol)/o, (®>0): ‘SOR’ preconditioning.

* M=HHT, where His ‘close’ to L. ‘Incomplete Cholesky factorization’
@Sompuﬁng ili




Multivariate Optimization:
Conjugate Gradient Method

= More Common Preconditioners (Preconditioning)
* Incomplete LU

 Algebraic multi-grid (AMG)

* Inverse based multi-level Incomplete LU

@Compuﬁng

Numerical Optimization (2019 Fall)
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Multivariate Optimization:

Conjugate Gradient Method

= Nonlinear CG (Flectcher-Reeves: CG-FR)
Consider nonlinear function f(x)

* Given x, Evaluate fj:=f(x,), Vf; := Vf(x,).

* While Vf, 20 compute a,

X1 = X + Py

Evaluate Vf, .,

BFR = kaT+1ka+1
k+1 kaTka

P = _ka+1 + 331!%
@Sompuﬁng k:=k+1

©
L
()]
i
o
o)
c
e
+—
©
o
1S
=
[oR
o
©
O
=
Q
£
>
2

FEERrN
il!i




Multivariate Optimization:
Conjugate Gradient Method

= Comparison : Linear CG and Nonlinear CG

Linear CG Nonlinear CG (CG-FR)

Given x,, f(x) = 1/2x"Ax - b'x Given x, Evaluate f;:= f(xy), Vf; := Vf(x,).
Setry:= Ax,- b, py:=-ry, k :=0 Set py:=-Vf, k:=0
While r, # 0 While V£, # 0

o rkTr/ compute a,

" /pAp,
‘ Xy = X + 0Py
X1 = X + 0P,

Evaluate Vf,
k+1
ha =k + akApk

rr g ViV,
Brsy = k%r Kt VEIVE
k "k

pk+1 = _rk+1 +Bk+1pk pk+1 = _V fk+1 + Biilpk
k:=k+1 k:=k+1

@Compuﬁng Note that we observe Vf(x,) = Ax, — b = residue =r,

Numerical Optimization (2019 Fall)

il!i

Multivariate Optimization:
Conjugate Gradient Method

= CG-FR

* If f(x) is a convex function and step length is exact, CG-FR comes to linear CG.

* For nonlinear f(x), exact search is not easy. So, strong Wolfe condition is

recommendable for descent condition.

* Strong Wolfe condition

f(X, + a,p,) — f(X,) < c,a, VI(X,) - P,
‘Vf(xk +o,p,): pk‘ < —c,VIi(X,)-p,, 0<c,<c,<1/2

Recall : Wolfe condition

f(x, +a,p,) — f(X,) < c,a, VF(X,) - P,
Vi(x, +o,p,) P, =c,VFi(X,)-pP., 0<c,<c, <1

@ompuﬁng
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Multivariate Optimization:
Conjugate Gradient Method

= Some issues on CGs
* Linear CG
= |tis easy to find exact step length
= |t terminates within finite iterations
* Nonlinear CG
= |tis common to do inexact search
" |t needs restart strategies

* After the given number of iteration,

Numerical Optimization (2019 Fall)

set B, to 0 when two gradients are far from orthogonal by such a test:
VEIVE|
VI VT,

@Compuﬁng . i” .

>y >0, visa given number.

Multivariate Optimization:
Conjugate Gradient Method

= Variants of nonlinear CG

* Polak-Ribiere (CG-PR) method

PR . kaT+1(ka+1 - Vf)
ke VI VT,

* Hestenes-Stiefel (CG-HS) method

ws . VEL (VI - Vf]y
ki (VI 'ka)Tpk
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Multivariate Optimization:
Conjugate Gradient Method

When f(x) = %2x"Ax — b"x and A is non-symmetric

= Bi-conjugate Gradient Methods(BICG)
* Generate an auxiliary function g(X) = 1/2X'A"X-b'X
* Do the CG procedure together to optimize f(x) and g(x) at the same time.
- Givenx, X, b , setry=Ax,—b & T, =A'X,-b
* Generate two conjugate sequences:

M =0+ akApk P = Fer + BiaPy

r

—~

T = = =
k1 = Mot O‘kA P, Pei = — T T B Py

Numerical Optimization (2019 Fall)

@Compuﬁng . i” .

Multivariate Optimization:
Conjugate Gradient Method

* Bi-conjugate Gradient Methods(BICG)

* Choice of aand B : to ensure the orthogonalities:

'f, =pAp, =0 if i # ]

* So, we get
T TY
o = rk rk _ rk+1 rk+1
k — ~TA ’ k+1 — T
P AP, s
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Multivariate Optimization:
Conjugate Gradients Method

When f(x) = 2x"Ax — b™x and A is non-symmetric

= Conjugate Gradients Squares(CGS)

* Looking at CG, we realize that

r=r_,+o,Ap, =r =P(A)r,

for some polynomial P (A) when p, = —r,

* As iteration goes, r, will approach 0. It means P (A) is a kind of

contraction operator.

* Evidently, when r, = P,(A)?r, it is expected to give faster convergence

than original CG.

@Computing Ref: SIAM J. SCI. STAT. COMPUT. (1989) 36-52

Numerical Optimization (2019 Fall)
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Multivariate Optimization:
Conjugate Gradients Method
When f(x) = %x"Ax — b'™x and A is non-symmetric

* Bi-conjugate Gradients Stabilized(BICGSTAB)

* In CGS, we realize that

r. =P(AY’r, = r. =Q (AP (A)r,

* Instead of P (A)P,(A), use of Q,(A)P,(A) for some polynomial Q,(A) is

possible.

* When Q(A) = (1 + a;A)(1 + a,,A)...(1 + o A), it is good to have more

stabilized convergence than CGS.

@:ompuﬁng Ref: SIAM J. SCI. STAT. COMPUT. (1992) 631-644
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Multivariate Optimization:
Conjugate Gradients Method

= Ax = b Solvers

Direct Iterative —

@©

A=LU ’ = Ay o

3 - More General a

A o
Non- A &
symmetric | Pivoting GMRES, <
% i BiCGSTAB, 2

N

“e e 'é

Symmetric 8
positive Cholesky Con]u.gate } o
definite gradient §
More Robust g

>

=2

More Robust <———p | ess Storage (if sparse)

@Compuﬁng Ref.: https://nanohub.org/ . “!H )

Multivariate Optimization:
Conjugate Gradient Method

= Homework #5 (Implementation)

Due date : November 6 (Wednesday), 2019 10:30AM

* Implement linear/nonlinear Conjugate Gradient methods for the
following functions:
= f(x,y)=(x+2y—7)2+(2x+y-5)?
= f(x,y) =40(y —x?)* + (1-x)?
= f(x,y) = (1.5—x+xy)?+(2.25 = x + xy?)? + (2.625 — x + xy3)?

* Discuss their performances between linear and nonlinear CGs.
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Multivariate Optimization:
Least Square Methods

= How to determine a fitted model for the given measurement data

Skin Cancer Mortality vs State Latitude Skin Cancer Mortality vs State Latitude
— Correlation — Simple Linear Regression
5 gm0 B s
E e e correlation = 0,82 E martzlity = 388 2 - 5 88 atiude
=3 [ = -
S 0 L ‘1. 2w 'l /
i L £
B0 :.- P - B o150 "
E -’ ™ ® »
T 1 * LA
2 - e -
" "
E suI T T T T 1 E 50 L T T T T T
= 25 30 35 40 45 50 = 25 30 35 40 45 50

Latitude {at center of state) Latitude [at center of state)

https://www.graphpad.com/

g, p
L,f" I’1 “‘(«r" ﬂl’h

= R

varfical offsefs perpendicidar offsets

@Compuﬁng http://mathworld.wolfram.com/LeastSquaresFitting.html

Numerical Optimization (2019 Fall)
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Multivariate Optimization:
Least Square Methods

= Least Square Method is a way to minimize the functional.

functional : a real-valued function

f(x) = Z [d)(x t)-vy, ] r (X) rj(x) = ¢(x; t,-) =Y,

=1
\
modeling function for the given data y;

For residue vector component r(x) : R” —> R

- V(x) = X7, r(x) Vr(x) gradient of f(x)

* V(x) = ij:1 Vr(x) Vry(x)" + ij:1 ri(x) V2r,(x) Hessian of f(x)

@Sompuﬁng
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Jacobian

= Multivariate function r(x) = (r,(x), r,(x), ..., r,(x))T: R" > R™, x =
(Xy, Xy, +-ny X))

= Jacobian matrix J (m xn) of r(x) is defined by

6r1(X) arz()() M
axl axl 8X1
J) = r = An,n) o) Ak o)
dx a(XLXZ’-..,Xn) ' 8):(2 a):(z ) a):(z
6r1.(x) arz'(x) ) M
OX,, X, ox.
@Compuﬁng

Multivariate Optimization:
Least Square Methods

= Reformulation

f) = > > bt -y

=1

@ ri(x) := o(x; t) -y,

f(x) = %i r(x)* = %Hr(x)”i 'Euclidean Norm'
=1

J

Residue vector r(x) = (ry(x), ry(x), ..., r,,(x))T: R* - R™
Let J(x) be Jacobian of r(x). Then
© VEx) =2 . r(x) Vri(x) =J(x)"r(x)

Numerical Optimization (2019 Fall)

© VAX) =2 L Vrx) Vrx)T+ (%) V2r(x)

S JTIX) + 3y %) V2r ()
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Multivariate Optimization:
Least Square Methods

¢(a, b;t) =at+b:model

* (t;, v;): observations

t

Step 1. Define cost function f(a, b) = Z[y, — ¢(a, b; t)]? = X[y, — (a t, + b)]?
This is how to measure discrepancy between model and observation.
Step 2. Differentiate f(a,b) over undetermined parameters a and b.

Find a & b such that of/da = of/db = 0.

Then 0f/da=-22 tly,—(at;+b)]=0 } (Zt? Ztiﬁ _ (Ztiyi]
@C f 8f/6b =-22 [y, - (a t+ b)] =0 Ziti zl1 b Ziyi
«L.ompuiing

Multivariate Optimization:
Least Square Methods

* Different ways to measure discrepancy between model and

observation
© omaxig, ol oGt -y | > [r(x)],

‘ ij=1 | o(x; tj)_yj | = [r(x)[,

Numerical Optimization (2019 Fall)

L p
t. 1 %S
= A
vertiga! offsefs perpemidicular offsets
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Multivariate Optimization:
Least Square Methods

= Linear least square problems (‘Simplest LS’)

min f(x), f(x):= %HAX — sz = %(XTAT —y')(Ax —y)

* Vf(x) =AT(Ax -vy)
« V2f(x) = ATA
* When A has full column rank (that is, ATA is invertible), then ATA is

positive definite and f(x) is a convex quadratic functional. So,
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seeking x* such that Vf(x) = 0 yields the global minimizer.
Vf(x*) =0 <> ATA x* = ATy ‘normal equation’

@Compuﬁng

Multivariate Optimization:
Least Square Methods

= How to solve normal equation
* Cholesky factorization of ATA
* QR factorization
* SVD factorization
* lterative methods
= Conjugate Gradients

= Generalized Minimal Residue, Bi-conjugate Gradients

Numerical Optimization (2019 Fall)

= Conjugate Gradient Squared

= Bi-conjugate Gradient Stabilized
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Multivariate Optimization:
Least Square Methods

= Cholesky factorization forAx=b

* Ais decomposed into an upper triangular L and its transpose.
(Assume A is positive definite symmetric matrix)
= A=LLT
* ThenLL x=bh.
= Solve Ly = b by back-substitution
= Then solve LT x =y by back-substitution

= Back-substitution is simple and efficient.

@Compuﬁng
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Multivariate Optimization:
Least Square Methods

= QR factorizationforAx=b

* Ais decomposed into an orthogonal Q and an upper triangular R.
= A=QR (orthogonal matrixQ: QQ"=1)
* ThenQRx=b <> Rx=Q"h.

= Solve Rx=Q"b by back-substitution

@Sompuﬁng
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Multivariate Optimization:
Least Square Methods
= SVD factorization forAx=b
* Ais decomposed into an orthogonal, a diagonal and an
orthogonal.

= A=USV' (U, V are orthogonal and S is a diagonal)

* Then USV'x=b
<SVix=U"b

<~ Vix=StU"b <> x=VSiU™b

Numerical Optimization (2019 Fall)

* When Aismxn (m >n), it yields

A=[u, U ]{ }v =u,s, V'
@Compuﬁng i” :

Multivariate Optimization:
Least Square Methods

* Nonlinear least square problV Nonlinear model
: 1&f ),
min f(x), f(x) ::EZ) il :EZ
=1

* Gauss-Newton method (modified Newton’s)

(Recall : Newton’s method : Solve H(x,) p = -Vf(x,) )

- Let J(x) be a Jacobian of r(x) = (ry(x), r,(X), ., 1. (x))".
H(x,) = V2F (%) = J(x)TJ(x,) +Zm: r (%) V2r,(x,)
VH(x,) = J0x,)T (%,
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* Use the approximation of Hessian

VZ(x,) = J(x,)TJ(x,) by dropping off 2" term having V?r, im
@:ompuﬁng S




