

Numerical Optimization (2019 Fall)

Numerical Optimization

Instructor: Sung Chan Jun

Week #8: October 21 - 25, 2019

Announcements

- No Class
 - Date: October 23 (Wednesday), 2019
- Makeup Class
 - Date: October 21 (Monday), 2019
 - Time: 7:00 PM 8:15 PM
 - No attendance check

Course Syllabus (tentative)

Numerical Optimization (2019 Fall)

8th we	, ,	Unconstrained Multivariate Optimization	
7th we	ek Oct. 14, 16	Unconstrained Multivariate Optimization	Midterm (Oct. 16)
6th we	ek Oct. 7, 9	Unconstrained Multivariate Optimization	National Holiday (Oct. :
5th we	ek Sept. 30, Oct	Unconstrained Multivariate Optimization	
4th we	ek Sept. 23, 25	Unconstrained Multivariate Optimization	
3rd we	ek Sept. 16, 18	Univariate Optimization	
2nd we	Sept. 9, 11	Univariate Optimization	
1st we	ek Sept. 2, 4	Introduction of optimization	

Course Syllabus (tentative)

9th week	Oct. 28, 30	Constrained Multivariate Optimization		1
10th week	Nov. 4, 6	Constrained Multivariate Optimization		
11th week	Nov. 11, 13	Constrained Multivariate Optimization		
12th week	Nov. 18, 20	Global Optimization		ı
13th week	Nov. 25, 27	Global Optimization		
14th week	Dec. 2, 4	Global Optimization, Wrap-up		ı
15th week	Dec. <mark>9</mark>	Final Exam	Final Exam (Dec. 9)	43.01

Recall Last Week

- Multivariate Optimization: Second Derivative methods
 - $H(\mathbf{x}_k)$ (2nd order derivative) is approximated as \mathbf{B}_k
 - \mathbf{B}_k should consist of gradients (1st order derivatives) and function evaluations. That is, $\mathbf{H}(\mathbf{x}_k) \approx \mathbf{B}_k$. Then computing Hessian should be much cheaper.
 - Computing inverse of approximation \mathbf{B}_k should be done easily.
 - Then use approximate Hessian B_k as follows:
 - $\frac{\mathsf{H}(\mathbf{x}_k) \; \mathbf{p}_k = -\nabla f(\mathbf{x}_k)}{\mathsf{Newton's}} \quad \frac{\mathbf{B}_k \; \mathbf{p}_k = -\nabla f(\mathbf{x}_k)}{\mathsf{Modified version of Newton's}}$

Recall Last Week

- Multivariate Optimization: Quasi-Newton's
 - Investigation of Hessian
 - Taylor expansion : $\nabla f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) = \nabla f(\mathbf{x}_k) + H(\mathbf{x}_k) \alpha_k \mathbf{p}_k + O(|\mathbf{p}_k|^2)$.
 - Then $\nabla f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \approx \nabla f(\mathbf{x}_k) + H(\mathbf{x}_k) \ \alpha_k \mathbf{p}_k \ \rightarrow \ H(\mathbf{x}_k) \ \alpha_k \mathbf{p}_k \approx \nabla f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \nabla f(\mathbf{x}_k)$
 - In other expression, since $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$, $H(\mathbf{x}_k) (\mathbf{x}_{k+1} \mathbf{x}_k) \approx \nabla f(\mathbf{x}_{k+1}) \nabla f(\mathbf{x}_k)$
 - Thus, Hessian may satisfies secant equation approximately.

`Secant Equation'

- Seek \mathbf{B}_k which is an approximation to $H(\mathbf{x}_k)$, that is, $\mathbf{B}_k \approx H(\mathbf{x}_k)$.
 - Symmetry & positive definite
 - $\mathbf{B}_{k+1} \mathbf{B}_k$ has low rank
 - Satisfy secant equation

- To keep Hessian property.
- To be easy to update \mathbf{B}_{k+1} from \mathbf{B}_k .
- Hessian satisfies secant equation approximately

Recall Last Week

- Multivariate Optimization Quasi Newton's
 - $H(\mathbf{x}_k) \approx \mathbf{B}_k$ (approximation of Hessian)
 - \mathbf{B}_k is updated with $\mathbf{B}_{k+1} = \mathbf{B}_k + \mathbf{U}_k$. (since $\mathbf{B}_{k+1} \mathbf{B}_k$ has low rank)
 - \mathbf{U}_k is low rank and is depending on \mathbf{B}_k , $\nabla f(\mathbf{x}_{k+1})$, $\nabla f(\mathbf{x}_k)$, \mathbf{x}_{k+1} and \mathbf{x}_k .
 - Such \mathbf{B}_k is applied to $\mathbf{B}_k \mathbf{p}_k = -\nabla f(\mathbf{x}_k)$ in place of $H(\mathbf{x}_k)$. "Quasi Newton's"
 - How to give U_k ?
 - SR1-update (Rank 1 update)
 - BFGS-update (Rank 2 update)
 - DFP-update (Rank 2 update)

Recall Last Week

- Quasi-Newton's: SR1 (symmetric-rank-1) update
 - $\mathbf{B}_{k+1} = \mathbf{B}_k + \sigma \mathbf{v} \mathbf{v}^T$ (\mathbf{v} : vector, σ : either 1 or -1)
 - $\bullet \quad \mathbf{v} = \delta(\mathbf{y}_k \mathbf{B}_k \mathbf{s}_k)$
 - $\delta^2 = |\mathbf{1}/(\mathbf{y}_k \mathbf{B}_k \mathbf{s}_k)^T \mathbf{s}_k|$ and $\sigma = \text{sign}[(\mathbf{y}_k \mathbf{B}_k \mathbf{s}_k)^T \mathbf{s}_k]$

Finally, we have $\mathbf{B}_{k+1} = \mathbf{B}_k + \frac{(\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k)(\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k)^T}{(\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k)^T \mathbf{s}_k}$

How to compute inverse of B_k, that is, (B_k)⁻¹ = D_k

$$\boxed{\mathbf{B}_{k}\mathbf{p}_{k} = -\nabla f(\mathbf{x}_{k})} \quad \Box \qquad \boxed{\mathbf{p}_{k} = -\mathbf{D}_{k}\nabla f(\mathbf{x}_{k})}$$

$$\begin{split} \mathbf{D}_{K+1} &= \mathbf{B}_{k+1}^{-1} = \left[\mathbf{B}_{k} + \frac{(\mathbf{y}_{k} - \mathbf{B}_{k} \mathbf{s}_{k})(\mathbf{y}_{k} - \mathbf{B}_{k} \mathbf{s}_{k})^{T}}{(\mathbf{y}_{k} - \mathbf{B}_{k} \mathbf{s}_{k})^{T} \mathbf{s}_{k}} \right]^{-1} \\ &= \mathbf{B}_{k}^{-1} + \frac{(\mathbf{s}_{k} - \mathbf{B}_{k}^{-1} \mathbf{y}_{k})(\mathbf{s}_{k} - \mathbf{B}_{k}^{-1} \mathbf{y}_{k})^{T}}{(\mathbf{s}_{k} - \mathbf{B}_{k}^{-1} \mathbf{y}_{k})^{T} \mathbf{y}_{k}} = \mathbf{D}_{k} + \frac{(\mathbf{s}_{k} - \mathbf{D}_{k} \mathbf{y}_{k})(\mathbf{s}_{k} - \mathbf{D}_{k} \mathbf{y}_{k})^{T}}{(\mathbf{s}_{k} - \mathbf{D}_{k} \mathbf{y}_{k})^{T} \mathbf{y}_{k}} \end{split}$$

Numerical Optimization (2019 Fall)

Recall Last Week

- Quasi-Newton's : SR1 (symmetric-rank-1) update
 - \mathbf{B}_{k+1} may be not positive definite even if \mathbf{B}_k is positive definite.
 - Possible for denominator to be zero, i.e, $(\mathbf{y}_k \mathbf{B}_k \mathbf{s}_k)^T \mathbf{s}_k = 0$. When it occurs, the method will be break-down.
 - Strategy of SR1 to avoid breaking down
 - If $(\mathbf{y}_k \mathbf{B}_k \mathbf{s}_k)^T \mathbf{s}_k \ge r |\mathbf{s}_k| \cdot |\mathbf{y}_k \mathbf{B}_k \mathbf{s}_k| > 0$ (r \in (0,1)), then accept update.
 - Otherwise, reject update and then $\mathbf{B}_{k+1} := \mathbf{B}_k$.

Multivariate Optimization: Quasi-Newton's Method

- Rank-2 update
 - BFGS update

(Broyden, Fletcher, Goldfarb, and Shanno)

$$\begin{aligned} & \boldsymbol{B}_{k+1} = \boldsymbol{B}_{k} - \frac{\boldsymbol{B}_{k} \boldsymbol{s}_{k} \boldsymbol{s}_{k}^{\mathsf{T}} \boldsymbol{B}_{k}}{\boldsymbol{s}_{k}^{\mathsf{T}} \boldsymbol{B}_{k} \boldsymbol{s}_{k}} + \frac{\boldsymbol{y}_{k} \boldsymbol{y}_{k}^{\mathsf{T}}}{\boldsymbol{y}_{k}^{\mathsf{T}} \boldsymbol{s}_{k}}, \text{ assuming } \boldsymbol{s}_{k}^{\mathsf{T}} \boldsymbol{y}_{k} > 0 \\ & \boldsymbol{s}_{k} := \boldsymbol{x}_{k+1} - \boldsymbol{x}_{k}, \ \boldsymbol{y}_{k} := \nabla \boldsymbol{f}_{k+1} - \nabla \boldsymbol{f}_{k} \end{aligned}$$

Multivariate Optimization: Quasi-Newton's Method

(BFGS)

$$\begin{aligned} \boldsymbol{B}_{k+1} &= \boldsymbol{B}_k - \frac{\boldsymbol{B}_k \boldsymbol{s}_k \boldsymbol{s}_k^T \boldsymbol{B}_k}{\boldsymbol{s}_k^T \boldsymbol{B}_k \boldsymbol{s}_k} + \frac{\boldsymbol{y}_k \boldsymbol{y}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k}, \text{ assuming } \boldsymbol{s}_k^T \boldsymbol{y}_k > 0 \\ \boldsymbol{s}_k &:= \boldsymbol{x}_{k+1} - \boldsymbol{x}_k, \ \boldsymbol{y}_k := \nabla f_{k+1} - \nabla f_k \end{aligned}$$

$$\mathbf{B}_{k}\mathbf{p}_{k} = -\nabla f(\mathbf{x}_{k})$$

$$\mathbf{p}_{k} = -\mathbf{B}_{k}^{-1}\nabla f(\mathbf{x}_{k})$$

Assuming
$$\mathbf{D}_{k} := \mathbf{B}_{k}^{-1}$$

$$\begin{aligned} & \mathbf{D}_{k+1} = (\mathbf{I} - \rho_k \mathbf{s}_k \mathbf{y}_k^T) \mathbf{D}_k (\mathbf{I} - \rho_k \mathbf{y}_k \mathbf{s}_k^T) + \rho_k \mathbf{s}_k \mathbf{s}_k^T \\ & \rho_k := \mathbf{1}/(\mathbf{y}_k^T \mathbf{s}_k) \end{aligned}$$

(Inverse Version of BFGS)

Sherman-Morrison Identities

(Sherman-Morrison Identity)

If A is nonsingular and c, d are n x 1 matrices, then

$$(\mathbf{A} + \mathbf{c}\mathbf{d}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{c}\mathbf{d}^T\mathbf{A}^{-1}}{1 + \mathbf{d}^T\mathbf{A}^{-1}\mathbf{c}}$$
 when $1 + \mathbf{d}^T\mathbf{A}^{-1}\mathbf{c} \neq 0$

(Sherman-Morrison-Woodbury Identity)

• If A is a n x n nonsingular matrix, C & D are n x k matrices, and $(I + D^T A^{-1} C)$ is nonsingular, then

$$(A + CD^{T})^{-1} = A^{-1} - A^{-1}C(I + D^{T}A^{-1}C)^{-1}D^{T}A^{-1}.$$

- Sherman-Morrison-Woodbury is a generalization of Sherman-Morrison.
- When A⁻¹ is known and minor update in A is needed, Sherman–Morrison shows how the previously computed information in A⁻¹ can be updated to produce the new inverse.

Multivariate Optimization: Quasi-Newton's Method

- BFGS update derivation
 - Seek **D** minimizing $|\mathbf{D} \mathbf{D}_k|_{WF}$ under two conditions : $\mathbf{D} = \mathbf{D}^T$, $\mathbf{D}\mathbf{y}_k = \mathbf{s}_k$ and **D** is positive definite. $(\mathbf{y}_k := \nabla f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \nabla f(\mathbf{x}_k), \ \mathbf{s}_k := \alpha_k \mathbf{p}_k)$
 - Take into account **W**-weighted Frobenius matrix norm $| |_{WF}$ such that $Ws_k = y_k$.
 - $\mathbf{W} := \mathbf{G}_k$ (averaged Hessian) defined by $\mathbf{G}_k = \left[\int_0^1 \nabla^2 f(\mathbf{x}_k + \tau \alpha_k \mathbf{p}_k) d\tau \right]$ satisfy $\mathbf{W} \mathbf{s}_k = \mathbf{y}_k$.
 - (BFGS) $\begin{aligned} \mathbf{D}_{k+1} &= (\mathbf{I} \rho_k \mathbf{s}_k \mathbf{y}_k^{\mathsf{T}}) \mathbf{D}_k (\mathbf{I} \rho_k \mathbf{y}_k \mathbf{s}_k^{\mathsf{T}}) + \rho_k \mathbf{s}_k \mathbf{s}_k^{\mathsf{T}} \\ \rho_k &:= 1/(\mathbf{y}_k^{\mathsf{T}} \mathbf{s}_k) \end{aligned}$
 - It is noted that Different variants are obtained by different choices of weighting matrix W.

Multivariate Optimization: Quasi-Newton's : BFGS

14

Remarks

Recall: 2nd Wolfe Condition

$$\nabla f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \cdot \boldsymbol{p}_k \ge c_2 \nabla f(\boldsymbol{x}_k) \cdot \boldsymbol{p}_k, \quad 0 < c_1 < c_2 < 1$$

• Wolfe condition yields $\mathbf{s}_k^T \mathbf{y}_k > 0$.

(Proof)

If α_k satisfies the Wolfe conditions, by 2^{nd} condition $\nabla f_{k+1}^T \mathbf{s}_k \ge c_2 \nabla f_k^T \mathbf{s}_k$ (since $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k = \alpha_k \mathbf{p}_k$) it gives $\mathbf{y}_k^T \mathbf{s}_k = (\nabla f_{k+1} - \nabla f_k)^T \mathbf{s}_k \ge c_2 \nabla f_k^T \mathbf{s}_k - \nabla f_k^T \mathbf{s}_k = (c_2 - 1) \nabla f_k^T \mathbf{s}_k$.

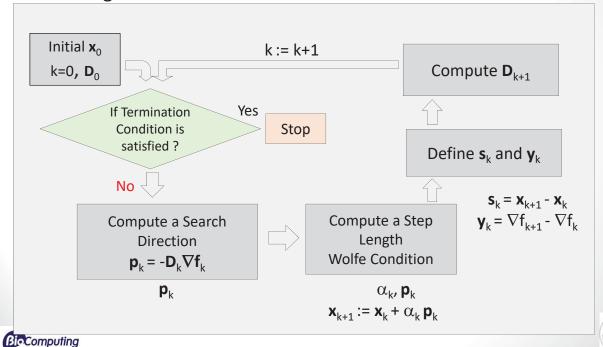
Now we get $\mathbf{y}_k^T \mathbf{s}_k \ge (c_2 - 1) \alpha_k \nabla f_k^T \mathbf{p}_k$. (since $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k = \alpha_k \mathbf{p}_k$ and $\mathbf{y}_k = \nabla f_{k+1} - \nabla f_k$) $\nabla f_k^T \mathbf{p}_k < 0$ (since \mathbf{p}_k is a descending direction) and $c_2 - 1 < 0$. Thus, $(c_2 - 1) \alpha_k \nabla f_k^T \mathbf{p}_k > 0$.

Finally, $\mathbf{y}_k^{\mathsf{T}} \mathbf{s}_k \ge (\mathbf{c}_2 - \mathbf{1}) \ \alpha_k \nabla \mathbf{f}_k^{\mathsf{T}} \mathbf{p}_k > 0.$

• If \mathbf{B}_k and \mathbf{D}_k are positive definite, then so are \mathbf{B}_{k+1} and \mathbf{D}_{k+1} .

Multivariate Optimization: Quasi-Newton's Method

BFGS algorithm



Multivariate Optimization: Quasi-Newton's Method

- Notes
 - · Different variants are obtained by different choices of weighting matrix W.
 - Bad situations : when $\mathbf{s}_{k}^{\mathsf{T}}\mathbf{y}_{k}$ is so tiny

$$\begin{aligned} \boldsymbol{B}_{k+1} &= \boldsymbol{B}_k - \frac{\boldsymbol{B}_k \boldsymbol{s}_k \boldsymbol{s}_k^T \boldsymbol{B}_k}{\boldsymbol{s}_k^T \boldsymbol{B}_k \boldsymbol{s}_k} + \frac{\boldsymbol{y}_k \boldsymbol{y}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k}, \text{ assuming } \boldsymbol{s}_k^T \boldsymbol{y}_k > 0 \\ \boldsymbol{s}_k &:= \boldsymbol{x}_{k+1} - \boldsymbol{x}_k, \ \boldsymbol{y}_k := \nabla f_{k+1} - \nabla f_k \end{aligned}$$

$$\begin{split} \boldsymbol{D}_{k+1} &= (\boldsymbol{I} - \boldsymbol{\rho}_k \boldsymbol{s}_k \boldsymbol{y}_k^T) \boldsymbol{D}_k (\boldsymbol{I} - \boldsymbol{\rho}_k \boldsymbol{y}_k \boldsymbol{s}_k^T) + \boldsymbol{\rho}_k \boldsymbol{s}_k \boldsymbol{s}_k^T \\ \boldsymbol{\rho}_k &:= 1/(\boldsymbol{y}_k^T \boldsymbol{s}_k) \end{split}$$

- lacktriangle Good news : BFGS has effective self-correcting property even if lacktriangle is a poor approximation.
- It is known that BFGS is the most effective among them.

Multivariate Optimization: Quasi-Newton's Method

- Convergence of BFGS
 - Assume that f(x) is twice continuously differentiable and
 - L = { $\mathbf{x} \in \Re^n | f(\mathbf{x}) \le f(\mathbf{x}_0)$ } is convex, and \exists m, M > 0 such that m $|\mathbf{z}|^2 \le$ $\mathbf{z}^{\mathsf{T}}(\nabla^2 \mathbf{f}(\mathbf{x}))\mathbf{z} \leq \mathbf{M} \|\mathbf{z}\|^2$ for all $\mathbf{z} \in \Re^{\mathsf{n}}$, $\mathbf{x} \in \mathsf{L}$.
 - B₀ is a symmetric positive definite matrix.
 - Then the sequence $\{x_n\}$ of BFGS converges to the minimizer x^* of f(x).
- Convergence rate of BFGS
 - Assume that f(x) is twice continuously differentiable and
 - The sequence $\{x_n\}$ converges to the minimizer x^* of f(x).
 - $|\nabla^2 f(\mathbf{x}) \nabla^2 f(\mathbf{x}^*)| \le L|\mathbf{x} \mathbf{x}^*|$ at \mathbf{x}^* .
 - Then the sequence $\{x_n\}$ of BFGS converges super-linearly (rate > 1) to x^* .

Multivariate Optimization: Quasi-Newton's Method

Broyden Class

$$\begin{aligned} \boldsymbol{B}_{k+1} &= \boldsymbol{B}_k - \frac{\boldsymbol{B}_k \boldsymbol{s}_k \boldsymbol{s}_k^T \boldsymbol{B}_k}{\boldsymbol{s}_k^T \boldsymbol{B}_k \boldsymbol{s}_k} + \frac{\boldsymbol{y}_k \boldsymbol{y}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k} + \boldsymbol{\varphi}_k (\boldsymbol{s}_k^T \boldsymbol{B}_k \boldsymbol{s}_k) \boldsymbol{v}_k \boldsymbol{v}_k^T \\ \boldsymbol{\varphi}_k \text{ is a scalar and } \boldsymbol{v}_k &= \left[\frac{\boldsymbol{y}_k}{\boldsymbol{y}_k^T \boldsymbol{s}_k} - \frac{\boldsymbol{B}_k \boldsymbol{s}_k}{\boldsymbol{s}_k^T \boldsymbol{B}_k \boldsymbol{s}_k} \right] \end{aligned}$$

• $\phi_k = 0$ (BFGS) and $\phi_k = 1$ (DFP)

■
$$\mathbf{B}_{k+1} = (1 - \phi_k) \mathbf{B}^{BFGS}_{k+1} + \phi_k \mathbf{B}^{DFP}_{k+1} \phi_k \in (0,1)$$

"Restricted Broyden Class"

(Question) What is DFP Quasi-Newton's method?

$$\begin{aligned} \boldsymbol{B}_{k+1} &= \boldsymbol{B}_k - \frac{\boldsymbol{B}_k \boldsymbol{s}_k \boldsymbol{s}_k^T \boldsymbol{B}_k}{\boldsymbol{s}_k^T \boldsymbol{B}_k \boldsymbol{s}_k} + \frac{\boldsymbol{y}_k \boldsymbol{y}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k}, \text{ assuming} \boldsymbol{s}_k^T \boldsymbol{y}_k > 0 \\ \boldsymbol{s}_k &:= \boldsymbol{x}_{k+1} - \boldsymbol{x}_k, \ \boldsymbol{y}_k := \nabla f_{k+1} - \nabla f_k \end{aligned}$$

Multivariate Optimization: Derivative-based methods

Method of Steepest Descent	Newton's Method	Quasi Newton's Method
Direction	Direction	Direction
$\mathbf{p}_{k} = -\nabla f(\mathbf{x}_{k})$	$\mathbf{p}_{k} = -(\nabla^{2} f(\mathbf{x}_{k}))^{-1} \nabla f(\mathbf{x}_{k})$	$\mathbf{p}_{k} = -\mathbf{B}_{k}^{-1} \nabla f(\mathbf{x}_{k})$
		$\mathbf{B}_{\mathrm{k}} \approx (\nabla^2 \mathbf{f}(\mathbf{x}_{\mathrm{k}}))$
Global convergence	Fast convergence	Relatively fast
Slow convergence	(quadratic)	convergence close to
near minimum	Require expensive	Newton's
	Hessian computing	Do not require
	every iteration	Hessian computing

Multivariate Optimization: Derivative Based Methods

Homework #4

Due date: October 30 (Wednesday), 2019 10:30 AM

• Justify the inverse version of BFGS by using Sherman-Morrison identity.

$$\begin{aligned} & \boldsymbol{B}_{k+1} = \boldsymbol{B}_k - \frac{\boldsymbol{B}_k \boldsymbol{s}_k \boldsymbol{s}_k^T \boldsymbol{B}_k}{\boldsymbol{s}_k^T \boldsymbol{B}_k \boldsymbol{s}_k} + \frac{\boldsymbol{y}_k \boldsymbol{y}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k}, \text{ assuming } \boldsymbol{s}_k^T \boldsymbol{y}_k > 0 \\ & \boldsymbol{s}_k := \boldsymbol{x}_{k+1} - \boldsymbol{x}_k, \ \boldsymbol{y}_k := \nabla f_{k+1} - \nabla f_k \end{aligned}$$

Assuming
$$\mathbf{H}_k := \mathbf{B}_k^{-1}$$

$$\begin{aligned} & \mathbf{D}_{k+1} = (\mathbf{I} - \rho_k \mathbf{s}_k \mathbf{y}_k^T) \mathbf{D}_k (\mathbf{I} - \rho_k \mathbf{y}_k \mathbf{s}_k^T) + \rho_k \mathbf{s}_k \mathbf{s}_k^T \\ & \rho_k := 1/(\mathbf{y}_k^T \mathbf{s}_k) \end{aligned}$$

(Inverse Version of BFGS)

Multivariate Optimization: Derivative Based Methods

Homework #4 (Implementation)

Due date: October 30 (Wednesday), 2019 10:30 AM

- Implement the following numerical methods:
 - The method of steepest descent
 - Newton's method
 - Quasi Newton's method (BFGS)
- Compare their performance for the following three problems:
 - $f(x, y) = (x + 2y 7)^2 + (2x + y 5)^2$
 - $f(x, y) = 40(y x^2)^2 + (1-x)^2$
 - $f(x, y) = (1.5 x + xy)^2 + (2.25 x + xy^2)^2 + (2.625 x + xy^3)^2$
- First start at (2.0, 2.0) at each function. Then use different starting points to discuss how approximate points are moving.

Multivariate Optimization: Conjugate Gradient Method

- Conjugate Gradient Method (CG)
 - Iterative method to solve a linear system Ax = b for a square symmetric positive definite matrix A.
 - It is interesting that
 - Solving linear system

$$Ax = b$$

⇔ Solving minimization problem

min
$$[\frac{1}{2}x^{T}Ax - b^{T}x]$$

Multivariate Optimization:

Conjugate Gradient Method

■ Solving linear system ⇔ Solving minimization problem

$$Ax = b$$

min $[\frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x}]$

Fall)

Proof)

Let
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x}$$
.

Assume \mathbf{x}_0 is a solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Then
$$\nabla f(\mathbf{x}) = \frac{1}{2}\mathbf{A}\mathbf{x} + \frac{1}{2}(\mathbf{x}^{\mathsf{T}}\mathbf{A})^{\mathsf{T}} - (\mathbf{b}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{A}\mathbf{x} - \mathbf{b}$$
. $\nabla f(\mathbf{x}_0) = \mathbf{0}$.

(since **A** is symmetric and \mathbf{x}_0 is a solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$.)

Also, hessian of $f(\mathbf{x})$ is $\nabla(\nabla f(\mathbf{x})) = (\mathbf{A}^T)^T = \mathbf{A} > 0$ at \mathbf{x}_0 .

(since A is positive definite).

Due to optimality condition, \mathbf{x}_0 is a local minimum point of $f(\mathbf{x})$.

Assume \mathbf{x}_0 is a local minimum point of $f(\mathbf{x})$.

Due to optimality condition, $\nabla f(\mathbf{x}_0) = \mathbf{0}$. So, $\mathbf{A}\mathbf{x}_0 - \mathbf{b} = \mathbf{0}$.

Finally, \mathbf{x}_0 is a solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Recall: Optimality Conditions

- (NC) Necessary condition for a local minimum grad(f(x)) = 0, $H(x) \ge 0$.
- (SC) Sufficient condition for a local minimum grad(f(x)) = 0, H(x) > 0.

Multivariate Optimization:Conjugate Gradient Method

Conjugacy

BioCompu

- A set of nonzero vectors $\{\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_L\}$ is conjugate with respect to symmetric positive definite matrix \mathbf{A} if $\mathbf{p}_i^{\mathsf{T}} \mathbf{A} \mathbf{p}_i = 0$, for all $i \neq j$.
- Geometrical meaning of conjugacy : $f(x) = \frac{1}{2}x^TAx b^Tx$
 - When \mathbf{x}_{1}^{*} and \mathbf{x}_{2}^{*} are optimal points along two subspaces $S_{1} = \{ \mathbf{x}_{1} + \Sigma \alpha_{i} \mathbf{p}_{i} \mid \alpha_{i} \in \mathbb{R}, i = 1, 2, ..., L \}$, respectively, then $(\mathbf{x}_{1}^{*} \mathbf{x}_{2}^{*})$ are conjugate to $\{\mathbf{p}_{1}, \mathbf{p}_{2}, ..., \mathbf{p}_{L}\}$.

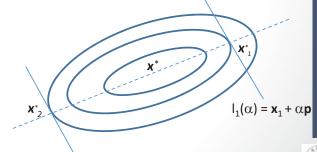
$$\frac{\left.\frac{\partial f(\mathbf{x}_{1}^{*} + \boldsymbol{\alpha}_{i} \mathbf{p}_{i})}{\partial \boldsymbol{\alpha}_{i}}\right|_{\boldsymbol{\alpha}_{i} = 0}}{\left.\frac{\partial f(\mathbf{x}_{1}^{*} + \boldsymbol{\alpha}_{i} \mathbf{p}_{i})}{\partial \boldsymbol{\alpha}_{i}}\right|_{\boldsymbol{\alpha}_{i} = 0}} = \nabla f(\mathbf{x}_{1}^{*})^{\mathsf{T}} \mathbf{p}_{i} = 0, \quad i = 1, 2, \dots, L$$

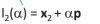
$$\frac{\left.\frac{\partial f(\mathbf{x}_{2}^{*} + \boldsymbol{\alpha}_{i} \mathbf{p}_{i})}{\partial \boldsymbol{\alpha}_{i}}\right|_{\boldsymbol{\alpha}_{i} = 0}}{\left.\frac{\partial f(\mathbf{x}_{2}^{*})^{\mathsf{T}} \mathbf{p}_{i}}{\partial \boldsymbol{\alpha}_{i}}\right|_{\boldsymbol{\alpha}_{i} = 0}} = \nabla f(\mathbf{x}_{2}^{*})^{\mathsf{T}} \mathbf{p}_{i} = 0, \quad i = 1, 2, \dots, L$$

$$0 = \left(\nabla f(\mathbf{x}_{1}^{*}) - \nabla f(\mathbf{x}_{2}^{*})\right)^{\mathsf{T}} \mathbf{p}_{i}$$

$$= (\mathbf{A}\mathbf{x}_{1}^{*} - \mathbf{b} - \mathbf{A}\mathbf{x}_{2}^{*} + \mathbf{b})^{\mathsf{T}} \mathbf{p}_{i}$$

$$= (\mathbf{x}_{1}^{*} - \mathbf{x}_{2}^{*})^{\mathsf{T}} \mathbf{A} \mathbf{p}_{i}, \quad i = 1, 2, \dots, L$$



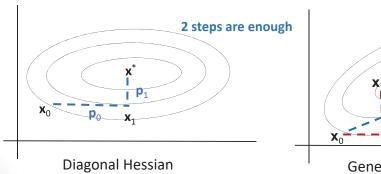


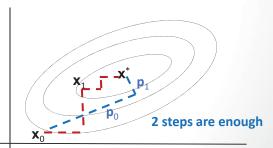
Numerical Optimization (2019 Fall)

Multivariate Optimization:Conjugate Gradient Method

Conjugate direction methods

For given a set of conjugate directions $\{\mathbf{p}_0, \mathbf{p}_1, ..., \mathbf{p}_{n-1}\}$ with respect to a symmetric positive definite matrix \mathbf{A} (n x n), the sequence $\{\mathbf{x}_k\}$ by setting $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$ converges to the minimum of the quadratic convex function ($\mathbf{f}(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} - \mathbf{b}^T\mathbf{x}$) within at most n steps when α_k is given by exact search.





General Hessian
Transform Hessian into Diagonal.

Multivariate Optimization: Conjugate Gradient Method

Consider convex quadratic function

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x}.$$

Motivation

Present a new conjugate direction (\mathbf{p}_k) in terms of residue ($\mathbf{r}_k := \mathbf{A}\mathbf{x}_k - \mathbf{b}$) and the previous conjugate direction (\mathbf{p}_{k-1}) as follows:

$$\mathbf{p}_{k} = -\mathbf{r}_{k} + \beta_{k} \mathbf{p}_{k-1}$$

- Conjugate gradient method is generating conjugate direction for each iteration, so it is a special case of conjugate direction method.
- We note that $\mathbf{p}_k = -\mathbf{r}_k$ (case $\beta_k = 0$) is the steepest decreasing direction.

Multivariate Optimization: Conjugate Gradient Method

Consider convex quadratic function

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x}.$$

- How to generate conjugate directions?
 - Key idea : determine β_k in order that a new vector $\mathbf{p}_k = -\mathbf{r}_k + \beta_k \mathbf{p}_{k-1}$ is a conjugate with respect to A.
 - So β_k is estimated by $\beta_k = \frac{\mathbf{r}_k^T \mathbf{A} \mathbf{p}_{k-1}}{\mathbf{p}_k^T \cdot \mathbf{A} \mathbf{p}_{k-1}}$.

Proof: By multiplying $\mathbf{p}_{k-1}^{\mathsf{T}} \mathbf{A}$ into both sides of $\mathbf{p}_k = -\mathbf{r}_k + \beta_k \mathbf{p}_{k-1}$, we get $\mathbf{p}_{k-1}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k} = -\mathbf{p}_{k-1}^{\mathsf{T}} \mathbf{A} \mathbf{r}_{k} + \beta_{k} \mathbf{p}_{k-1}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k-1}$. Since \mathbf{p}_{k} and \mathbf{p}_{k-1} are conjugate with respect of **A**, $\mathbf{p}_{k-1}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k} = 0$. Then $0 = -\mathbf{p}_{k-1}^{\mathsf{T}} \mathbf{A} \mathbf{r}_k + \beta_k \mathbf{p}_{k-1}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k-1}$. Thus, $\beta_k = \mathbf{p}_{k-1}^{\mathsf{T}} \mathbf{A} \mathbf{r}_k / \mathbf{p}_{k-1}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k-1}$.

Multivariate Optimization: Conjugate Gradient Method

- Standard CG Algorithm $(f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} \mathbf{b}^T\mathbf{x})$
 - Given x₀
 - Set k:=0, $\mathbf{r}_0 := \mathbf{A}\mathbf{x}_0 \mathbf{b}$, $\mathbf{p}_0 := -\mathbf{r}_0$ (initial search direction is $-\nabla f(\mathbf{x}_0)$)
 - While **r**_k ≠ **0**

$$\begin{array}{c} \alpha_{k} := - r_{k}^{\mathsf{T}} \mathbf{p}_{k} \\ \mathbf{p}_{k}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k} \end{array} \Rightarrow \mathbf{x}_{k+1} := \mathbf{x}_{k} + \alpha_{k} \mathbf{p}_{k} \\ \mathbf{r}_{k+1} := \mathbf{A} \mathbf{x}_{k+1} - \mathbf{b} \qquad \Rightarrow \beta_{k+1} := r_{k+1}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k} \\ \mathbf{p}_{k}^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k} \end{array}$$

$$\mathbf{p}_{k+1} := - \mathbf{r}_{k+1} + \beta_{k+1} \mathbf{p}_{k} \Rightarrow k := k+1$$

Determine step length (exact line search)

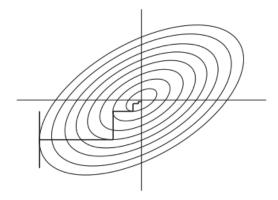
Compute residue

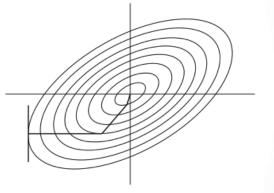
Search a new direction

(Exercise) Check
$$\boxed{\alpha_k = - \mathbf{r}_k^T \mathbf{p}_k / \mathbf{p}_k^T \mathbf{A} \mathbf{p}_k}$$

Conjugate Gradient Method

Multivariate Optimization:





Method of Steepest Descent

Conjugate Gradient Method

Multivariate Optimization: Conjugate Gradient Method

- CG properties
 - Search directions are conjugate w.r.t matrix A.
 - Residue r_k and search direction p_i are orthogonal, that is, $\mathbf{r}_{k}^{\mathsf{T}}\mathbf{p}_{i} = 0$ for i = 0, 1, ..., k-1.
 - Residues r_i are mutually orthogonal, that is, $\mathbf{r}_{k}^{\mathsf{T}}\mathbf{r}_{i}=0$ for i = 0, 1, ..., k-1.
 - Identities (Please check!)

$$\begin{aligned} & \boldsymbol{r}_{k+1}^{T}\boldsymbol{A}\boldsymbol{p}_{k} \, = \boldsymbol{r}_{k+1}^{T}\boldsymbol{r}_{k+1} \, / \, \boldsymbol{\alpha}_{k} \\ & \boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k} \, = \boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k} \, / \, \boldsymbol{\alpha}_{k} \end{aligned}$$

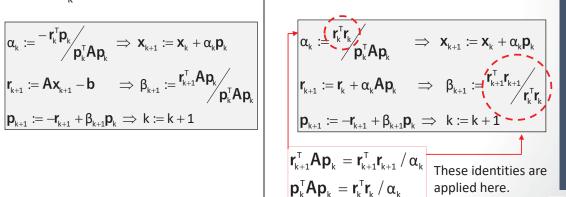
31

Multivariate Optimization: Conjugate Gradient Method

- Standard CG Algorithm
 - Given x₀
 - Set $\mathbf{r}_0 := \mathbf{A} \mathbf{x}_0 \mathbf{b}, \, \mathbf{p}_0 := -\mathbf{r}_0, \, \mathbf{k} := 0$
 - While $\mathbf{r}_{k} \neq 0$

$$\begin{aligned} &\alpha_k \coloneqq - \overset{\intercal}{r_k} \overset{\intercal}{p_k} \underset{p_k^\intercal}{p_k} A p_k & \Longrightarrow & x_{k+1} \coloneqq x_k + \alpha_k p_k \\ & \vdots \\$$

- Given \mathbf{x}_0
- Set $\mathbf{r}_0 := \mathbf{A} \mathbf{x}_0 \mathbf{b}, \, \mathbf{p}_0 := -\mathbf{r}_0, \, \mathbf{k} := 0$
- While $\mathbf{r}_k \neq 0$



32

Multivariate Optimization: Conjugate Gradient Method

- Convergence of CG
 - It converges within N-iterations when $\bf A$ is a symmetric p·d matrix of size N x N.
- Convergence rate of CG
 - When **A** has eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$,

$$\left\| \mathbf{x}_{k} - \mathbf{x}^{*} \right\|_{\mathbf{A}} \leq 2 \left(\frac{\sqrt{\kappa(\mathbf{A})} - 1}{\sqrt{\kappa(\mathbf{A})} + 1} \right)^{k} \left\| \mathbf{x}_{0} - \mathbf{x}^{*} \right\|_{\mathbf{A}}, \ \kappa(\mathbf{A}) = \frac{\lambda_{N}}{\lambda_{1}}$$

- CG convergence depends on clustering of eigenvalues of A.
 - When $\kappa(\mathbf{A})$ is big enough, i.e. eigenvalues are widely scattered,
 - · It converges slowly.
 - When $\kappa(A)$ is around 1, i.e. eigenvalues are well clustered,
 - It converges fast.

Multivariate Optimization: Conjugate Gradient Method

- How to speed-up CG when CG convergence is slow
 - One idea
 - To use preconditioner 'symmetric positive definte matrix M'
 - Transform original problem into new problem

$$\mathbf{A} \mathbf{x} = \mathbf{b} \implies (\mathbf{M}^{-1} \mathbf{A}) \mathbf{x} = \mathbf{M}^{-1} \mathbf{b}$$
 or
$$\mathbf{A} \mathbf{x} = \mathbf{b} \implies (\mathbf{M}^{-1} \mathbf{A} \mathbf{M}^{-1}) \mathbf{x}^{\wedge} = \mathbf{M}^{-1} \mathbf{b} \text{ and } \mathbf{x}^{\wedge} = \mathbf{M}^{T} \mathbf{x}$$

■ In order for $\kappa(\mathbf{M}^{-1}\mathbf{A})$ or $\kappa(\mathbf{M}^{-1}\mathbf{A}\ \mathbf{M}^{-T})$ to be close to 1, \mathbf{M} can be chosen properly, then CG can be faster than before.

