Numerical Optimization

Instructor : Sung Chan Jun

Week #8 : October 21 - 25, 2019

@Compuﬁng

©
L
()]
i
o
o
c
e
+—
@
=
S
=
[oR
@)
“©
O
=
()
S
>
2

Announcements

* No Class

* Date : October 23 (Wednesday), 2019
= Makeup Class

* Date : October 21 (Monday), 2019

* Time :7:00 PM - 8:15 PM

* No attendance check

@Sompuﬁng

Numerical Optimization (2019 Fall)

FEERrN
il!u

Course Syllabus (tentative)

1st week Sept. 2, 4 Introduction of optimization
2nd week | Sept. 9, 11 Univariate Optimization
3rd week | Sept. 16, 18 Univariate Optimization

Unconstrained Multivariate
4th week | Sept. 23, 25

Optimization

Unconstrained Multivariate
5th week |Sept. 30, Oct. 2

©
L
()]
i
o
o
c
e
+—
@
=
S
=
[oR
@)
“©
O
=
()
S
>
2

Optimization
Unconstrained Multivariate

6th week Oct. 7,9 - National Holiday (Oct. 9)
Optimization
Unconstrained Multivariate

7th week Oct. 14, 16 - Midterm (Oct. 16)
Optimization

Unconstrained Multivariate

8th week Oct. 21, 23 o
Optimization

@Compuﬁng

Course Syllabus (tentative)

Constrained Multivariate

9th week Oct. 28, 30 .
Optimization

Constrained Multivariate
10th week Nov. 4, 6

Optimization
Constrained Multivariate

11th week | Nov. 11,13 s
Optimization

Numerical Optimization (2019 Fall)

12th week | Nov. 18, 20 Global Optimization

13th week | Nov. 25, 27 Global Optimization

14th week Dec. 2, 4 Global Optimization, Wrap-up

15th week Dec. 9 Final Exam Final Exam (Dec. 9)

@Sompuﬁng | ili |

Recall Last Week

= Multivariate Optimization: Second Derivative methods

* H(x,) (2"¢ order derivative) is approximated as B,

= B, should consist of gradients (1% order derivatives) and function evaluations.

That is, H(x,) = B,. Then computing Hessian should be much cheaper.
= Computing inverse of approximation B, should be done easily.
* Then use approximate Hessian B, as follows:

" H(x)p,= -Vf(xk) — B,.p=-Vf(x,)

Newton’s Modified version of
Newton’s

Numerical Optimization (2019 Fall)

@Compuﬁng

Recall Last Week

= Multivariate Optimization: Quasi-Newton’s

* Investigation of Hessian
= Taylor expansion : Vf(x +o,p,) = Vf(x,) + H(x,) o, p, + O(|p,|2).

* Then Vf(x+o,p,) = V(x,) + H(x,) o, p, — H(x,) o,p, = VE(x, +oup,) - VF(x,)

* In other expression, since X,,; = X+ Py, | H(X,) (X1 - %) = V(%) - VF(x,)

* Thus, Hessian may satisfies secant equation approximately. “Secant Equation’

* Seek B, which is an approximation to H(x,), that is, B, = H(x,).

* Symmetry & positive definite \\ * Tokeep Hessian property.

* B,,; — B, has low rank |+ Tobe easy to update B, from B,.
+

©
L
()]
i
o
o)
c
e
+—
©
o
1S
=
[oR
o
©
O
=
Q
£
>
2

Sy SSEET T E T |+ Hessian satisfies secant equation

approximately

@ompuﬁng | ili |

Recall Last Week

= Multivariate Optimization — Quasi Newton’s
* H(x,) = B, (approximation of Hessian)

= B, is updated with B,,;= B, + U,. (since B,,; — B, has low rank)
* U,is low rank and is depending on B, Vf(x,,,), Vf(x,), x,,; and x,.
* Such B, is applied to B, p, = -Vf(x,) in place of H(x,). “Quasi Newton’s”
= How to give U,?
* SR1-update (Rank 1 update)
* BFGS-update (Rank 2 update)

* DFP-update (Rank 2 update)

@Compuﬁng

©
L
()]
i
o
o
c
e
+—
@
=
S
=
[oR
@)
“©
O
=
()
S
>
2

Recall Last Week

= Quasi-Newton’s : SR1 (symmetric-rank-1) update
* By,;= B+ ow' (v:vector, c: either 1 or -1)
= v=93(y,—Bs,)

= 82=|1/(y,—Bs)"s,| and o = sign[(y, — B,s,)"s,]

Finally, we have g _pg e -BSJ. -Bis,)'
’ Yy - Bksk)Tsk

* How to compute inverse of B, that is, (B,) =D,

B.p.=-Vix,)| . |p=-DVf(x,)

-1
(yk 3 Bksk)(yk B Bksk)T
(Y, -Bs,)'s,
_ B-kl n (sk 3 BI?Yk)(sk - B?yk)T _ Dk T (Sk - Dkyk)(sk - Dkyk)T
@: > (sk - B;yk)T Y (Sk - Dkyk)T Y«
<Computing

—_Rpl _
DK+1 - Bk+1 - Bk +

Numerical Optimization (2019 Fall)

FEERrN
il!i

Recall Last Week

= Quasi-Newton’s : SR1 (symmetric-rank-1) update
* B,,; may be not positive definite even if B, is positive definite.

* Possible for denominator to be zero, i.e, (y, - B,S,)'s, = 0. When it occurs,

the method will be break-down.
* Strategy of SR1 to avoid breaking down

= If (y, - Bs,)"s, = rls.|-|y- B,s,| >0 (re(0,1)), then accept update.

= Otherwise, reject update and then B,,;:= B,.

@Compuﬁng

©
L
()]
i
o
o
c
e
+—
@
=
S
=
[oR
@)
“©
O
=
()
S
>
2

Multivariate Optimization:

Quasi-Newton’s Method
= Rank-2 update

* BFGS update

(Broyden, Fletcher, Goldfarb, and Shanno)

_BssBe |, v
SIBksk y:Sk
S, == X, — X, Y, = Vi, — Vi

- k+1

Bk+1 = Bk

, assuming s;y, >0

@Sompuﬁng

Numerical Optimization (2019 Fall)

FEERrN
il!i

Multivariate Optimization:
Quasi-Newton’s Method

(BFGS)

B -p _BSSB, VY
- k s:Bksk ylsk

Sy = Xy — X, Yo = Vi, — VA

B.p.= -Vf(x,) ﬁ p.= -B.'Vf(x,)

Assuming D, := B, @

, assuming sy, >0

D, =(- pkskyI)Dk (- pkyksl) + pksksl
Py = 1/(V:Sk)

(Inverse Version of BFGS)

@Compuﬁng

Numerical Optimization (2019 Fall)

Sherman-Morrison Identities

(Sherman-Morrison Identity)

* If Alis nonsingular and ¢, d are n x 1 matrices, then

A ledTAT!

A dT -1 = A_l—
(A +ed)) 1+ dTATc

when 1 +dTA lc#0

(Sherman-Morrison-Woodbury Identity)

* If Alis a n x n nonsingular matrix, C & D are n x k matrices, and (I + D’A"1C)

is nonsingular, then

(A+CD")1=A1-AIC(1+D'AIC)ID'AL

* Sherman-Morrison-Woodbury is a generalization of Sherman-Morrison.

* When Alis known and minor update in A is needed, Sherman—Morrison
shows how the previously computed information in A= can be updated to

produce the new inverse.
@Sompuﬁng

©
L
()]
i
o
o)
c
e
+—
©
o
1S
=
[oR
o
©
O
=
Q
£
>
2

FEERrN
il!i

Multivariate Optimization:
Quasi-Newton’s Method

= BFGS update derivation
* Seek D minimizing |D — D, | under two conditions : D = D", Dy,=s, and D
is positive definite. (y, := Vf(x +to,p,) — VF(x,), s, :=o,p,)
* Take into account W-weighted Frobenius matrix norm | | such that Ws, =y,
o i . . 1
W := G, (averaged Hessian) defined by G = Uo V(x, + takpk)dt}
satisfy Ws, = y,.
° (BFGS) Dy, = (- pkskyI)Dk(I - pkykslz) + pksksl
P = 1/(y,sy)

* It is noted that Different variants are obtained by different choices of

weighting matrix W.

@Compuﬁng

Numerical Optimization (2019 Fall)

FEERrN
il!i

Multivariate Optimization:
Quasi-Newton’s : BFGS

Recall : 2"d Wolfe Condition

* Remarks

VX, +a.p.) P, =, VIX)-p, 0<c <c, <1

* Wolfe condition yields s, "y, >0.

(Proof)

If o satisfies the Wolfe conditions, by 2" condition VfT,,; s,> c,VfT, s, (since s, = X,,; - X, = o, p,)
it gives y,'s, = (Vf .- VI)Ts, 2 ¢, VT s, - Vi Ts = (c,- 1)Vfls,.

Now we gety,s, > (c,- 1) o, VIl p,. (since s, =x,,-x.=op.andy,= Vf,, - Vf)

VT p <0 (since p,is a descending direction) and ¢, - 1 < 0. Thus, (c,-1) o, VfT,p, > 0.

Finally, y,"s,> (c,- 1) o, VfT,p, > 0.

* If B, and D, are positive definite, then so are B,,, and D, ;.

@Sompuﬁng

©
L
()]
i
o
o)
c
e
+—
©
o
1S
=
[oR
o
©
O
=
Q
£
>
2

FEERrN
il!i

Multivariate Optimization:
Quasi-Newton’s Method

= BFGS algorithm

Initial x, k:=k+1
k=0, D, |)/ C Compute D,

i

Define s, and y,

No{} ﬁ

If Termination
Condition is
satisfied ?

Stop

©
L
()]
i
o
o
c
e
+—
@
=
S
=
[oR
@)
“©
O
=
()
S
>
2

Sk = X1 ~ X
Compute a Search Compute a Step Y= V- Vi
Direction \—> Length
p, = -D,Vf, Wolfe Condition
Py Qs Py

Xir1 °= X+ Oy Py

«Computing

Multivariate Optimization:
Quasi-Newton’s Method

= Notes

 Different variants are obtained by different choices of weighting

matrix W.

* Bad situations : when s, Ty, is so tiny

B.s.s'B T)
B, =B, — 2k —yﬁyk , assuming 8y, > 0 D, =(1—ps.Y, D, (1—p.Y,S.) + PSSt
skBksk yksk 1/(T)
= s
S = Xer — Xiy Y= ka+1 - ka P YicSi

* Good news : BFGS has effective self-correcting property even if D, is a

poor approximation.

Numerical Optimization (2019 Fall)

* Itis known that BFGS is the most effective among them.

@Sompuﬁng | ili |

Multivariate Optimization:
Quasi-Newton’s Method

= Convergence of BFGS

* Assume that f(x) is twice continuously differentiable and

= L={xe R"| f(x) <f(xy)}is convex, and 3 m, M > 0 such that m|z|2 <
2'(V2f(x))z < M|z|? for all zeR", xelL.

= B, is a symmetric positive definite matrix.
* Then the sequence {x,} of BFGS converges to the minimizer x* of f(x).
= Convergence rate of BFGS

* Assume that f(x) is twice continuously differentiable and

©
L
()]
i
o
o
c
e
+—
@
=
S
=
[oR
@)
“©
O
=
()
S
>
2

= The sequence {x,} converges to the minimizer x" of f(x).
= |V2(x) - VAH(x")| <L| x=x"] at x".

* Then the sequence {x,} of BFGS converges super-linearly (rate > 1) to x".

@Compuﬁng

Multivariate Optimization:
Quasi-Newton’s Method

Recall : BFGS update
= Broyden Class P

B, -B, _BSsB vy
+1

'Bs, V.S
B s STB y yT $B,S, K2k
_ k¥ k~k ="k kI k T T
Bk+1 S Ss'B s + yTS + d)k(skBksk)vkvk S, =Xy — Xy, Yy = Vi, — Vi
k=k*k k ~k

B,s
¢, is a scalar and v, :[)T,k ==t
yksk skBksk

, assumingsyy, >0

= ¢, =0 (BFGS) and ¢, = 1 (DFP)

" By, =(1—¢) B¥; + $, B, $,€(0,1)

“Restricted Broyden Class”

Numerical Optimization (2019 Fall)

* (Question) What is DFP Quasi-Newton’s method?

@Sompuﬁng | ili |

Multivariate Optimization:
Derivative-based methods

Method of Steepest

Newton’s Method

Quasi Newton’s

* Global convergence
* Slow convergence

near minimum

* Fast convergence

(quadratic)

* Require expensive

Hessian computing

every iteration

Descent Method
Direction Direction Direction
p. = -Vf(x,) p. = -(Vf(x,)) 1VF(x,) p. = -B,1Vf(x,)
B, ~ (V2f(x,))

* Relatively fast

convergence close to

Newton’s

* Do not require

Hessian computing

@Compuﬁng

©
L
()]
i
o
o
c
e
+—
@
=
S
=
[oR
@)
“©
O
=
()
S
>
2

Multivariate Optimization:
Derivative Based Methods

= Homework #4

Due date : October 30 (Wednesday), 2019 10:30 AM

* Justify the inverse version of BFGS by using Sherman-Morrison identity.

B _-B - B.s,s:B, . AN
- ‘ sIBksk y;sk

- Vi,

, assuming sy, >0

S, =X, — X, Y, = Vi,

+1

Assuming H, :=B,1

D, =(—- pkskyI)Dk (- pkyksl) + pksksl
P = 1/(y:sk)
(Inverse Version of BFGS)

Numerical Optimization (2019 Fall)

@ompuﬁng | ili |

Multivariate Optimization:
Derivative Based Methods

= Homework #4 (Implementation)
Due date : October 30 (Wednesday), 2019 10:30 AM

* Implement the following numerical methods:
= The method of steepest descent
= Newton’s method

= Quasi Newton’s method (BFGS)

* Compare their performance for the following three problems:
" f(x,y)=(x+2y—7)>+ (2x+y-5)?
= f(x,y) =40(y —x?)* + (1-x)?

Numerical Optimization (2019 Fall)

= f(x,y) = (1.5—x+xy)?+(2.25 = x + xy?)? + (2.625 — x + xy3)?

* First start at (2.0, 2.0) at each function. Then use different starting points

to discuss how approximate points are moving.

@Compuﬁng . i” .

Multivariate Optimization:
Conjugate Gradient Method

* Conjugate Gradient Method (CG)
* lterative method to solve a linear system Ax = b for a square
symmetric positive definite matrix A.

* ltisinteresting that

* Solving linear system

Ax=Db

<> Solving minimization problem

©
L
()]
i
o
o)
c
e
+—
©
o
1S
=
[oR
o
©
O
=
Q
£
>
2

min [/AxTAx — b™x]

@Sompuﬁng | “I |

Multivariate Optimization: (2s)
Conjugate Gradient Method

= Solving linear system < Solving minimization problem

Ax=b - min [/AXTAX — bTx]

Recall : Optimality Conditions
Proof)
Let f(X) — 1/2XTAX _ bTX. * (NC) Necessary condition for a local minimum
grad(f(x)) = 0, H(x) 2 0.
Assume Xg is a solution of Ax = b. * (SC) Sufficient condition for a local minimum

Then Vf(x) = %Ax + %(xTA)T = (b)T = Ax—b. Vf(x,) = 0. grad(fd) =0, H0 > 0

(since A is symmetric and x, is a solution of Ax = b.)
Also, hessian of f(x) is V(Vf(x)) = (AT)T= A > 0 at x,.
(since A is positive definite).
Due to optimality condition, x, is a local minimum point of f(x).
Assume X, is a local minimum point of f(x).

Due to optimality condition, Vf(x,) = 0. So, Ax,—b = 0.

@:Omm Finally, x, is a solution of Ax = b. | ili |

Multivariate Optimization:
Conjugate Gradient Method

= Conjugacy
* A set of nonzero vectors {p,, p,, .- , P.} is conjugate with respect to symmetric
positive definite matrix A if pTA p;=0, foralli#].
* Geometrical meaning of conjugacy : f(x) = %x"Ax — b'x

= Whenx"; and x, are optimal points along two subspaces S; ={x; +Z a;p, | o, € R, i
=1,2,..,L}andS,={x, +Zo,p, | ,e R, i=1, 2, ..., L}, respectively, then (x"; —x",)

are conjugate to {p,, p,, ..., P.}-

of(x; + ap,)
oa,

! ;=0

=Vf(x;)'p,=0, i=12-,L

©
L
()]
i
o
o)
c
e
+—
©
o
1S
=
[oR
o
©
O
=
Q
£
>
2

of(x; + ap,)
oo,

! ;=0

= Vf(x;)'p,=0, i=12,L

o
Il

(vHx;) - vix;)) p, :
= (Ax; —b - Ax; + b)"p,
@3‘ =(X; - X;)"Ap,, i=1,2,---,L ,(at) = x, + ap

Multivariate Optimization:
Conjugate Gradient Method

= Conjugate direction methods

For given a set of conjugate directions {p,, p;, .-, P,,.1} With respect to a
symmetric positive definite matrix A (n x n), the sequence {x,} by setting x,,,
=X, + oy p, converges to the minimum of the quadratic convex function (f(x)

= %x"Ax — b'x) within at most n steps when o, is given by exact search.

Numerical Optimization (2019 Fall)

_————— 2stepsare enough o \\

T T
o ey \/ / P /
[S P / /% \ p/ /
\\ \\\‘ . T? - / // \Eftl,: -3 - %

xoi:x-p_ T N ///)
O Xy — N | " 2steps are enough
)
Diagonal Hessian General Hessian iy
) Transform Hessian into Diagonal. ili y
@:ompuﬂng -

Multivariate Optimization:
Conjugate Gradient Method

= Consider convex quadratic function
f(x) = axTAx — b'x.

* Motivation

Present a new conjugate direction (p,) in terms of residue (r, := Ax, - b) and the

previous conjugate direction (p,_,) as follows:

Py = -1 + BiPya

* Conjugate gradient method is generating conjugate direction for

©
L
()]
i
o
o)
c
e
+—
©
o
1S
=
[oR
o
©
O
=
Q
£
>
2

each iteration, so it is a special case of conjugate direction method.

* We note that p, = -r, (case 3,=0) is the steepest decreasing direction...

@Sompuﬁng | ili |

Multivariate Optimization:

Conjugate Gradient Method

* Consider convex quadratic function
f(x) = axTAx — b'x.

* How to generate conjugate directions?

* Key idea : determine B3, in order that a new vector p, = -r, + B,p,.; isa

conjugate with respect to A.
AP,

* So B, is estimated by B, = .
‘ " PLAP

Proof : By multiplying p,_;" A into both sides of p, = -r, + B,P\.1,

with respect of A, p,,"A p, = 0.

@Compuﬁng

we get p"APp.=-P AT+ B P, AP, Since p, and p, ; are conjugate

Then0=-p TAr + B P "Apy . Thus, B =p "Ar /Py AP

©
L
()]
i
o
o
c
e
+—
@
=
S
=
[oR
@)
“©
O
=
()
S
>
2

Multivariate Optimization:
Conjugate Gradient Method

= Standard CG Algorithm (f(x) = %2x"Ax — b'x)

* Given x,

* Set k:=0, ry:= Ax,y- b, py:= -r, (initial search direction is -Vf(x;))

* Whiler, #0

-
a, = FVT = Xy = X, + AP,
P.ApP,

T
I‘k+1 = Axk+1 - b = Bk+1 = rkJrlA%Ap
k k

P = oy +BaP = ki=k+1

(Exercise) Check |a :_rkTIy
k piAp,

@Sompuﬁng

Tttt

Determine step length
(exact line search)

Compute residue

Numerical Optimization (2019 Fall)

Search a new direction

FEERrN
il!i

Multivariate Optimization:
Conjugate Gradient Method

N\

Method of Steepest Descent Conjugate Gradient Method

@Compuﬁng

Multivariate Optimization:
Conjugate Gradient Method

* CG properties
* Search directions are conjugate w.r.t matrix A.

* Residue r, and search direction p, are orthogonal,
thatis, r,'p,=0fori=0, 1, ..., k-1.
* Residues r; are mutually orthogonal,
thatis, r,'r=0fori=0, 1, ..., k-1.
* |dentities (Please check!)
AP, = k., /o

p;Apk = rkTrk /ak

Numerical Optimization (2019 Fall)

@Sompuﬁng | “H |

Multivariate Optimization:
Conjugate Gradient Method

e Standard CG Algorithm
— Given x,
— Setry:=Ax,-b, py:=-r, k:=0

— Whiler, 20

-
a = P . = X, =X, +oPp,
P.AR,

r'. A
= Bk+1 — "k+1 pk

rk+1 = Axk+1 - b pTApk
k

Pt = ey T BB = ki=k+1

@Compuﬁng

Practical CG Algorithm
— Given x,
— Setry:=Ax,-b, py:=-ry k:=0

— Whiler, 20

= X =X+,
- =~

[Ty
p.Ap,
7 N

Yo M
rk+1 = rk + akApk = Bk+1 = e k%r
k Tk

\
\

N -

Numerical Optimization (2019 Fall)

Pri = T +BaP = Ki=k+ T~--
T . t

 f A =t .r o

attP Kkt / k' These identities are

p;/—\pk = rkTrk /ak applied here.

FEERrN
il!i

Multivariate Optimization:
Conjugate Gradient Method

= Convergence of CG

* It converges within N-iterations when A is a symmetric p-d matrix of size N x N.

= Convergence rate of CG

* When A has eigenvalues A, <A, < ... <A,

Jr(A) +1

-], <o Y2

xo—x*“A, x(A) = %

* CG convergence depends on clustering of eigenvalues of A.

= When k(A) is big enough, i.e. eigenvalues are widely scattered,

* It converges slowly.

= When k(A) is around 1, i.e. eigenvalues are well clustered,

* |t converges fast.

@Sompuﬁng

©
L
()]
i
o
o)
c
e
+—
©
o
1S
=
[oR
o
©
O
=
Q
£
>
2

FEERrN
il!i

Multivariate Optimization:
Conjugate Gradient Method

= How to speed-up CG when CG convergence is slow

* One idea
= To use preconditioner ‘symmetric positive definte matrix M’
= Transform original problem into new problem
Ax=b = (M!A)x=Mlb or
Ax=b = (MIAMT)x""M1lb and x"=M"x

= |n order for k(M1A) or k(M1A M) to be close to 1, M can be

chosen properly, then CG can be faster than before.

@Compuﬁng

©
L
()]
i
o
o
c
e
+—
@
=
S
=
[oR
@)
“©
O
=
()
S
>
2

FEERrN
il!i

