Numerical Optimization

Instructor : Sung Chan Jun
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Week #6 : October 7 — 11, 2019

@Compuﬁng

Announcements

= Midterm Exam
* Date : October 16 (Wednesday), 2019
* Time :10:30 AM — Noon
* Scope : Week #1 — Week #7
= No Class
* Date : October 23 (Wednesday), 2019
= Makeup Class

* Date : October 21 (Monday), 2019

Numerical Optimization (2019 Fall)

°* Time :7:00 PM - 8:15 PM

* No attendance check
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Course Syllabus (tentative)

1st week Sept. 2, 4 Introduction of optimization
2nd week | Sept. 9, 11 Univariate Optimization
3rd week | Sept. 16, 18 Univariate Optimization

Unconstrained Multivariate
4th week | Sept. 23, 25

Optimization

Unconstrained Multivariate
5th week |Sept. 30, Oct. 2

Optimization

Unconstrained Multivariate
6th week Oct. 7,9 National Holiday (Oct. 9)

Optimization

Unconstrained Multivariate
7th week Oct. 14, 16 Midterm (Oct. 16)

Optimization
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Constrained Multivariate
8th week Oct. 21, 23

@Compuﬁng

Optimization

Course Syllabus (tentative)

Constrained Multivariate

9th week Oct. 28, 30 .
Optimization

Constrained Multivariate
10th week Nov. 4, 6

Optimization

Constrained Multivariate
11th week Nov. 11, 13

Optimization

Numerical Optimization (2019 Fall)

12th week | Nov. 18, 20 Global Optimization

13th week | Nov. 25, 27 Global Optimization

14th week Dec. 2, 4 Global Optimization, Wrap-up

15th week Dec. 9 Final Exam Final Exam (Dec. 9 )
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Recall Last Week

= Multivariate Optimization: Methods for Smooth Functions

Minimize f(x) on x=(x;, X, ,..., X, )T €R"

* Typical Algorithm (model algorithm)
S1. [Test for convergence]
If termination condition is satisfied, the algorithm terminates with x, as the solution.
S2. [Compute (or determine) a search direction]
Compute a non-zero n-vector p, (direction of search).

S3. [Compute (or determine) a step length]
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Compute o, (step length) such that f(x, + o, p,) < f(x,).
S4. [Update the estimate of the minimum)]

Set X1 := X, + o p,and k := k + 1, and go back to S1.

@Compuﬁng

Recall Last Week

= Multivariate Optimization: Methods for Smooth Functions

* Descent Methods

* Method for which a descent condition f,,, < f, for all k>0, that is,

function values are strictly decreasing.

* Descending direction p at x

= When p - Vf(x) <0, i.e the angle between vectors p and Vf(x) is > 7t/2.
= Estimate a slope of f(x) along unit v direction at x

o df(x +tv)/dt |, = Vf(x)-v = | VF(x)|-|v]| cos(B) = | VF(x)| cos(D)

Numerical Optimization (2019 Fall)

* Vf(x)-v yields the biggest slope when 6 = 0, that is, v = Vf(x)/| Vf(x)].

Vi(x)
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Recall Last Week

Multivariate Optimization: Methods for Smooth Functions
* Existence of a reasonable step length at descending direction
= (Theorem) Let p be a descending direction at x.
3 a, > 0 such that f(x + ap) < f(x), V 0 < a < a,,. (by Taylor expansion).
* Does the descent condition (f,; < f, for all k> 0) imply that the sequence {x,}
always converges to a local minimum point x?
= No.

= This case happens when

* Step lengths o, are chosen so that the reduction in function values gets far smaller at

Numerical Optimization (2019 Fall)

each iteration.

* Search direction p, is almost parallel to the contour line, i.e, almost orthogonal to Vf(x).

@Compuﬁng . i” .

Recall Last Week

= Multivariate Optimization: Methods for Smooth Functions

* Descent condition (f,,, < f, for all k > 0) doesn’t imply that the sequence

{x,} always converges to a local minimum point x.
* How to overcome when these cases happen?

* (To overcome 3% case) Step lengths o, are chosen so that the reduction in

function values gets far smaller at each iteration.
* Wolfe conditions or Armijo-Goldstein conditions
* (To overcome 1° case) Search direction p, is almost orthogonal to Vf(x).

* Direction p, keeps away from the orthogonality to Vf(x).

= Consider some condition such as |p - Vf(x) | >3 >0 for a small &

X

T X K

0
f\‘x 31 case : not good direction
X 2 It cannot reach the local minimum.
1
X, 3

X 2n case : good directi d good step length
N & — case : good direction and good step leng

Xs It reach successfully the local minimum. Sy
1%t case : too small step length X, il“ g
X
5|

@Sompuﬁng It cannot reach the local minimum. el “(
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Recall Last Week

= Multivariate Optimization: Methods for Smooth Functions

* Smart ways to choose step lengths o, ?

= Wolfe Conditions f(Xk + OLka) < C1OLka(Xk) Py + f(Xk)

vi(x, +a,p.)-p, >c,VIi(x,) p,,

0<cy<c, <1

Letting ¢(o,) = f(x, + o py) T

—

d(o) < c,0, dd(0)/doy, + f(x,)
dd(oy)/day, = c,dd(0)/da,

dloy) = flx, + oy py)

fix) k

k) = €10y dfl)(o)/daky

@Compuﬁng
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Recall Last Week

= Multivariate Optimization: Methods for Smooth Functions

* Smart ways to choose step lengths o, ?

= Goldstein Conditions

(1-c)a, Ve(x,): p, + f(x,) < f(x, +o,p,) < ca, VF(x,) p, +f(x,),0<c<1/2

|

(1= c)oy d(0)/doy, + f(x,) < dlo) < cay, dp(0)/dor, + F(x,)

Letting ¢(o) = f(x, + o py)

d(oy) = f(x+ oypy)
f(x,)

e -
-
-—
-—
-—
-

b R
| -
—

(o) = coy dd(0)/doy, + f(x,)

@Sompuﬁng
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Recall Last Week

= Multivariate Optimization: Methods for Smooth Functions

* (Theorem) Existence of a satisfying Wolfe Conditions

= Assume f(x) is continuously differentiable and f(x) > M (some

number) on the ray {x, + ap, : o >0}. Then Finterval of o satisfying

Wolfe Conditions

* (Theorem) Existence of a satisfying Goldstein Conditions

= Assume f(x) is continuously differentiable and f(x) > M (some
number) on the ray {x,+ ap, : & >0}. Then 3 interval of a satisfying

Goldstein Conditions.

@Compuﬁng
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Recall Last Week

= Multivariate Optimization: Methods for Smooth Functions

Iteration formula : x, = x,_, + o, P,

Assumptions
1. Let p, be a descent direction away from orthogonality to Vf(x,).
2. Let o satisfy Wolfe conditions.

3. Let f(x) > M (some number), continuously differentiable in a set D = {x: f(x) <

f(x,)}, and Vf is Lipschitz continuous on D.

Then x, converges to a stationary point, i.e, L[DOHVf(Xk)H =0

@Sompuﬁng
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Recall Last Week

= Line search : Finding step length

Minimize ¢(a) = f(x, + ap,) for the given search direction p,and a >0

* Easy thinking
= Find a local minimizer (exact line search). It may be too expensive.
* Smart thinking

= |nstead finding a local minimizer, choose o to give a substantial reduction in
f(x) in a cheaper way (inexact line search).

= Inexact line search
* Backtracking line search

= Choose a,>0, pe(0,1), c€(0,1)

Numerical Optimization (2019 Fall)

= Set =0,

* Repeat until f(x,+ap,)<ocVf-p,+f(x,)

Set a:= a-p

@:ompuﬁng = Terminate with o, = a. i :

Recall Last Week

= The method of steepest descent (Cauchy’s method)

* Directional derivative at x along direction p

o 00+ ap) = x)
a

a—0

* Steepest descent unit direction p

p - Vf(x)

= the greatest negative value of p-Vf(x) is p = -Vf(x)/| Vf(x)].

* Using steepest descent direction -Vf(x) yields

" Xy X AP D Ky 1= X - oy V(X))

START
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Recall Last Week

= The method of steepest descent

* Pros

= Reliable for any starting point (“global convergence”)

= Easy to implement. Used as a starting method for other methods
* Cons

= Slow convergence near the minimum point
* Evaluation of the gradient (first derivative approximation)

= When it is not practical, finite difference approximation is used.

Numerical Optimization (2019 Fall)

ﬁ o * w 'forward difference formula'

Ox; h,

of RS M 'backward difference formula'

Ox, h,

of s f(x + he) — f(x - he) ,'central difference formula' 7

o ()
@Compuﬁng .

Multivariate Optimization:
Method of Steepest Descent

= Convergence

* Convex quadratic function f(x) = 1/2x"Qx — b"x where Q is positive definite.

= Steepest descent method with exact line search (step length) converges

k
1-r
<
Q [1+r]

linearly. That is, it satisfies the following:

2 1—r2 5
o =, =375 b

Here A is eigenvalue of Q.

X ., —X

2
Q’ r= }\min/)\max ”xk -X

&

k+1

|
X, — X
0 Q

* General smooth function f(x) (twice continuously differentiable)

= Assume steepest descent method with exact line search converges to a point
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x*, where Hessian V2f(x") is positive definite. Then

f(x,,,) —f(x") < [ﬂ] [Fx)=f(X)], r=N /N
T+r

O Here M is eigenvalue of V2f(x®). i”

omputing




Multivariate Optimization:
Second Derivative methods

= Newton’s Method

* By Taylor’s expansion for multivariate function at current point x,,
1
f(x, +p,) = f(x,.)+p, - VI(x,) + EkaH(xk)pk

Looking for direction p, to yield a minimum of the right hand side is

H(x,)p, = -Vf(x,) .. .p.=-H(x)'Vix,).

So, Newton'’s iteration formula is X = X, — H(xk)“vf(xk)_

When a step length procedure is included,
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X, =X, — o, H(X)'VI(x,).

However, step length o, = 1 is commonly used.

@Compuﬁng

Multivariate Optimization:
Second Derivative methods

* Recall : Newton’s method in Univariate Optimization

= f= quadratic interpolation function f*. By Taylor’s expansion, with f(x,),
f'(x,) and " (x,)
" ! 1 "
f(x) = f(x,) + ' (x )(x = x,) + Ef (X )(x = x,)?

* Find its minimum and call it x,, , then

X =X, ' ()" (%))

* Newton’s Method (in Multivariate Optimization)

Numerical Optimization (2019 Fall)

X, = X, —H(X, ) VF(X,).
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Multivariate Optimization:
Second Derivative methods

= Geometrical view of Newton’s methods

local quadratic

approximation to f /—\

Current Point
x(k) ¢

X, Predicted Minimizers .
x(k+1)

Numerical Optimization (2019 Fall)

Univariate (1-dim) problem Multivariate (2-dim or higher) problem

@Compuﬁng

Multivariate Optimization:
Newton’s Method

= (Theorem) Convergence of Newton’s Method
* We assume that
" X,q = X — H(x, ) 1VF(x,)
= f(x) is twice differentiable and V?f(x) is Lipschitz continuous around

neighborhood of a local minimum x*, where Vf(x*) = 0 and V2f(x") is

positive definite.
¢ Then

= |terates sequences {x,} — x" and {Vf(x,)} = 0 when x, is sufficiently
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close to x".

= Convergence rate of {x,} and gradient {Vf(x,)} are quadratic.
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Multivariate Optimization:
Newton’s Method

w2 ag— Mewton's direction

=== CGradient descent

F)

Wy * Wy
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* Newton’s direction : more likely pointing to a local minimum

* Gradient direction : pointing to maximum direction of change

@Compuﬁng

Multivariate Optimization:
Newton’s Method

= When all Hessians H(x,) are positive definite and step length is
reasonable, then Newton’s ( p,= -H(x,)"Vf(x,)) is a descent
method and converges quadratically.
For p.= —H(x, )" Vf(x,) and Vf(x,) =0,
VE(x,) -p,= —VF(x, ) H(x, )" Vf(x,)< 0.
= In general, convergence is dependent on the accuracy of Taylor

expansion and on the distance between initial point and

Numerical Optimization (2019 Fall)

minimum point.
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Multivariate Optimization:
Newton’s Method

= Pros
* Rapid convergence (quadratic)
= Cons

* It need very expensive computation (evaluation of Hessian + its

inversion) every iteration.
* Convergence depends on initial point (starting point).

* Positive definiteness of Hessian is required.

@Compuﬁng
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Multivariate Optimization:
Modified Newton’s methods

= When Hessian H(x,) is indefinite, i.e, H(x,) has both negative
and positive eigenvalues

* Strategy 1. Find a matrix M such that H(x,) + M is positive definite.

= For example, choose M = 1l such H(x,) + M is sufficiently positive definite.

* Strategy 2. Modify H(x,) into positive definite matrix accordingly or

approximate it by positive definite matrix.

= When Hessian H(x,) is singular (noninvertible) and Vf(x,) # 0
* Newton method is not applicable.

* Choose the method of steepest descent.
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